ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2016-02-14
    Description: Article Fractures in rock can be altered geochemically and deformed under stress, affecting fluid flow rates across many orders of magnitude. Here, the authors present a universal scaling relationship between fluid flow and fracture specific stiffness, which will aid the interpretation of subsurface sites. Nature Communications doi: 10.1038/ncomms10663 Authors: Laura J. Pyrak-Nolte, David D. Nolte
    Electronic ISSN: 2041-1723
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-04-18
    Description: [1]  Seismic characterization of fluid flow through fractures requires a fundamental understanding of the relationship between the hydraulic and mechanical properties of fractures. A finite-size scaling analysis was performed on fractures with weakly correlated random aperture distributions to determine the fundamental scaling relationship between fracture stiffness and fracture fluid flow. From computer simulations, the dynamic transport exponent, which provides the power law dependence, was extracted and used to collapse the flow-stiffness relationships from multiple scales into a single scaling function. Fracture specific stiffness was determined to be a surrogate for void area that is traditionally used in percolation studies. The flow-stiffness scaling function displays two exponentially decaying regions above and below the transition into the critical regime where the hydromechanical properties become scale dependent. The transition is governed by the stressed flow paths when the flow path geometry deforms from a sheet-like topology to a string-like topology. The resulting hydro-mechanical scaling function provides a link between fluid flow and the seismic response of a fracture.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...