ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical prospecting 44 (1996), S. 0 
    ISSN: 1365-2478
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Physics
    Notes: We present a simple method for estimating an effective source wavelet from the first arrival in marine vertical seismic profiling (VSP) data. The method, which utilizes the free-space Green's function of the Helmholz equation, is simple and very computer efficient. We show examples from synthetic and real offset and walkaway VSP data.In the synthetic examples, we show that data modelled with the estimated wavelet give small residuals when subtracted from the reference data. In the real data examples, we show that when modelling with the wavelet estimated from the real data, in a smooth macromodel, we obtain a good fit between the first arrivals in the real and modelled data.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical prospecting 41 (1993), S. 0 
    ISSN: 1365-2478
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Physics
    Notes: A quantitative AVO algorithm suitable for media with slow lateral parameter variations is developed. The method is based on a target-oriented inversion scheme for estimation of elastic parameters in a locally horizontally stratified medium. The algorithm uses band-limited PP reflection coefficients in the τ-p domain to estimate P- and S-wave velocities, densities and layer thicknesses. To obtain these reflection coefficients, a pre-processing involving the Radon transform and multiple attenuation is necessary. Furthermore, a macromodel for the velocities above the target zone must be found prior to the inversion.Various inversion tests involving synthetic data with white Gaussian noise and modelling errors that are likely to occur in conjunction with real data have been performed. In general, the inversion algorithm is fairly robust, since it is able to reproduce the main features of the reference model: main interface locations and relative contrasts in the three unknown layer parameters are recovered.From a test combining the effect of source directivity, one thin layer and 20% white Gaussian noise, it was found that neglect of the source directivity in the inversion caused the largest errors in the estimates. This indicates that it is very important either to eliminate the source directivity in a preprocessing step, or to take the directivity into account in the present algorithm. Despite these problems it was concluded that the inversion algorithm was able to reproduce the main features of the reference model.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    PO Box 1354, 9600 Garsington Road , Oxford OX4 2XG , UK . : Blackwell Publishing Ltd
    Geophysical prospecting 52 (2004), S. 0 
    ISSN: 1365-2478
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Physics
    Notes: The combined use of time-lapse PP and PS seismic data is analysed for optimal discrimination between pressure and saturation changes. The theory is based on a combination of the well-known Gassmann model and the geomechanical grain model derived by Hertz and Mindlin. A key parameter in the discrimination process is the opening angle between curves representing constant changes in PP and PS reflectivity plotted against pressure and saturation changes. The optimal discrimination angle in the pressure–saturation space is 90° and this is used to determine optimal offset ranges for both PP and PS data. For typical production scenarios, we find an optimal offset range corresponding to an angle of incidence of 25–30°, for both PP and PS data. For gas we find slightly different results. This means that conventional survey parameters used in marine multicomponent acquisition should be sufficient for the purpose of estimating pressure and fluid saturation changes during production.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Physics Letters B 172 (1986), S. 445-446 
    ISSN: 0370-2693
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018
    Description: 〈span〉〈div〉ABSTRACT〈/div〉Recent developments in marine seismic acquisition include deploying a source vessel above a towed-streamer spread. We have developed an inversion algorithm to estimate source signatures for such acquisition configurations, by minimizing the difference between the recorded and a modeled direct wave. The forward modeling is based upon a physical modeling of the air bubble created by each air gun in the source array, and a damped Gauss-Newton approach is used for the optimization. Typical inversion parameters are empirical damping factors for the bubble oscillations and firing time delays for each air gun. Variations in streamer depth are taken into account, and a constant sea-surface reflection coefficient is also estimated as a by-product of the inversion. For data acquired in shallow waters, we have developed an extension of the forward modeling to include reflections from the water bottom to stabilize the inversion. The algorithm is tested on synthetic- and field-data examples, and the estimated source signature for the field-data example is used in a designature processing flow.〈/span〉
    Print ISSN: 0016-8033
    Electronic ISSN: 1942-2156
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-01-21
    Description: Laboratory permeability data from the brine-filled Tubåen Formation in the Snøhvit field show an order of magnitude permeability variation for approximately the same porosity. This variation in permeability is explained by a modified Kozeny-Carman equation that exploits the relationships among permeability, porosity, cementation, and pore geometry. The expression correlates the slope in a logarithmic plot of porosity versus permeability with the amount of contact cement and sorting, and the intercept with the grain size. Additional information about sorting and/or cementation can be used to better constrain the slope of the plot. Based on this equation, we found that the grain size and the amount of contact cement increased with depth in the lowermost Tubåen 1–3 sandstone units, this led to an increasing permeability with depth, in the same porosity range. The permeability variation in the shallowest Tubåen 4 sandstone unit was affected by sorting to a larger degree than the remaining Tubåen intervals, which influenced the cementation factor, porosity, and permeability simultaneously. These findings were supported by the depositional environment of the formation, a petrology study of grain size and sorting and a rock-physics study. The rock-physics study indicated that the samples with higher permeability had higher elastic moduli compared with the samples with lower permeability. This correlation between permeability and elastic moduli can be explained by the increasing amount of contact cement for the stiffer, high-permeability samples.
    Print ISSN: 0016-8033
    Electronic ISSN: 1942-2156
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Society of Exploration Geophysicists (SEG)
    Publication Date: 2011-07-01
    Description: We suggest two different mechanisms for generation of high-frequency signals from seismic sources: one type that we interpret as being caused by high-frequency effects close to and within each individual air gun and another type caused by an effect that we refer to as ghost cavitation. The former one is found to have a steep decreasing amplitude trend with frequency, while the latter has a close to 1/f attenuation for frequencies above 1 kHz. A thorough understanding of the effects is of significant importance to quantify and estimate any environmental impact of marine seismic air-gun arrays. The proposed ghost-cavitation mechanism needs further experimental testing. However, given that the suggested model is proven, we think it is possible to attenuate the high-frequency noise generated by compact air-gun arrays by increasing the areal extent of the gun array.
    Print ISSN: 0016-8033
    Electronic ISSN: 1942-2156
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Society of Exploration Geophysicists (SEG)
    Publication Date: 2012-07-01
    Description: At long distances from a seismic shot, the recorded signal is dominated by reflections and refractions within the water layer. This guided wave signal is complex and often is referred to as normal or harmonic modes. From the period equation, we derive a new approximate expression for the local minima in group velocity versus frequency. We use two data sets as examples: one old experiment where the seismic signal is recorded at approximately 13 km offset and another example using life of field seismic data from the Valhall Field. We identify four and five normal modes for the two examples, respectively. A fair fit is observed between the estimated and modeled normal mode curves. Based on the period equation for normal modes, we derive a simple, approximate equation that relates the traveltime difference between various modes directly to the velocity of the second layer. Using this technique for offsets ranging from 6 to 10 km (in step of 1 km), we find consistent velocity values for the second layer. We think that this method can be extended to estimate shallow lateral velocity variations if the method is applied for the whole field. We find that the simple equations and approximations used here offer a nice tool for initial investigations and understanding of normal modes, although a multilayered method is needed for detailed analysis. A comparison of three vintages of estimated normal mode curves for the Valhall field example representing seabed locations shifted by 1 km indicates that minor shifts in group velocity minima for the various modes are detectable.
    Print ISSN: 0016-8033
    Electronic ISSN: 1942-2156
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-10-25
    Description: Widely exploited in the industry, amplitude-variation-with-offset (AVO) inversion techniques are based on weak-contrast approximations of the plane-wave reflection coefficients. These approximations are valid for plane waves reflected at almost flat interfaces with weak contrasts in seismic parameters and for reflection angles below the critical angle. Regardless of the underlying assumptions, linearized coefficients provide a simple and physically adequate tool to accurately invert AVO data for seismic parameters at precritical angles. However, the accuracy of linearized coefficients drastically decreases with increasing incidence angle. Limitations occur around and beyond the critical ray, where the effect of wavefront curvature becomes prominent and thus can no more be neglected. The effective reflection coefficients generalize the plane-wave reflection coefficients for waves generated by point sources and reflected at curved interfaces. They account for the wavefront curvature and are adequate at any incidence angle. Our previous studies have shown that including the reflections around and beyond the critical angle in the AVO inversion significantly improves the accuracy of estimated parameters. However, the interface curvature also must have its contribution to the long-offset AVO inversion. We find that the interface curvature affects the energy propagation along the ray tube and the energy diffusion across the ray tube. The energy propagation along the tube is characterized by the geometrical spreading, which is strongly affected by interface curvature. The transverse diffusion is captured by the effective reflection coefficients which are less influenced by interface curvature. The long-offset AVO inversion is thus sensitive to interface curvature through a combination of several wave propagation factors.
    Print ISSN: 0016-8033
    Electronic ISSN: 1942-2156
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018
    Description: 〈span〉〈div〉Summary〈/div〉A ghost cavity cloud consists of many small vapour cavities and appears above and around the air-guns in the source array a few milliseconds after the source is fired. Since there are dissolved gases and stable microbubbles in natural seawater, the cavities will likely contain some amount of air in addition to water vapour. The cavity cloud exists for around 10 ms depending on the size and the configuration of the array. It is well known that with increasing volume fraction of tiny bubbles within the liquid, the sound velocity of the mixture at frequencies below the resonance frequencies of the bubbles gradually drops. Depending on the volume fraction of tiny bubbles, the sound velocity in the mixture can even drop below the sound velocity of the individual constituents. Vapour content within the bubbles—or cavities—further reduces the sound velocity. We do not know whether the volume fraction of the cavity cloud is high enough to significantly drop the sound velocity, nor do we know whether the far-field acoustic recording is affected even if the sound velocity within the cavity cloud drops substantially. To answer these questions, a modified k-wave − a k-space pseudo-spectral numerical method − is used. Subsequently, the simulation results are compared to recorded field data in order to estimate a potential sound velocity drop within the ghost cavity cloud. According to this comparison, we find that the reduction in sound velocity is probably less than 10%.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...