ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
  • 2
    Publication Date: 2020-08-11
    Description: Nowadays, Quality Management tools such as failure mode and effect analysis (FMEA) are widely used throughout the aeronautical, automotive, software, food services, health care and many other industries to sustain and improve quality and safety. The increasing complexity of scientific research makes it more difficult to maintain all activities under control, in order to guarantee validity and reproducibility of results. Even in non-regulated research, scientists need to be supported with management tools that maximize study performance and outcomes, while facilitating the research process. Frequently, steps that involve human intervention are the weak links in the process. Risk analysis therefore gives considerable benefit to analytical validation, assessing and avoiding failures due to human error, potential imprecision in applying protocols, uncertainty in equipment function and imperfect control of materials. This paper describes in detail how FMEA methodology can be applied as a performance improvement tool in the field of non-regulated research, specifically on a basic Life Sciences research process. We chose as “pilot process” the selection of oligonucleotide aptamers for therapeutic purposes, as an example of a complex and multi-step process, suitable for technology transfer. We applied FMEA methodology, seeking every opportunity for error and its impact on process output, and then, a set of improvement actions was generated covering most aspects of laboratory practice, such as equipment management and staff training. We also propose a useful tool supporting the risk assessment of research processes and its outputs and that we named “FMEA strip worksheet.” These tools can help scientists working in non-regulated research to approach Quality Management and to perform risk evaluation of key scientific procedures and processes with the final aim to increase and better control efficiency and efficacy of their research.
    Print ISSN: 0949-1775
    Electronic ISSN: 1432-0517
    Topics: Chemistry and Pharmacology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-22
    Description: The majority of geochemical and cosmochemical research is based upon observations and, in particular, upon the acquisition, processing and interpretation of analytical data from physical samples. The exponential increase in volumes and rates of data acquisition over the last century, combined with advances in instruments, analytical methods and an increasing variety of data types analysed, has necessitated the development of new ways of data curation, access and sharing. Together with novel data processing methods, these changes have enabled new scientific insights and are driving innovation in Earth and Planetary Science research. Yet, as approaches to data-intensive research develop and evolve, new challenges emerge. As large and often global data compilations increasingly form the basis for new research studies, institutional and methodological differences in data reporting are proving to be significant hurdles in synthesising data from multiple sources. Consistent data formats and data acquisition descriptions are becoming crucial to enable quality assessment, reusability and integration of results fostering confidence in available data for reuse. Here, we explore the key challenges faced by the geo- and cosmochemistry community and, by drawing comparisons from other communities, recommend possible approaches to overcome them. The first challenge is bringing together the numerous sub-disciplines within our community under a common international initiative. One key factor for this convergence is gaining endorsement from the international geochemical, cosmochemical and analytical societies and associations, journals and institutions. Increased education and outreach, spearheaded by ambassadors recruited from leading scientists across disciplines, will further contribute to raising awareness, and to uniting and mobilising the community. Appropriate incentives, recognition and credit for good data management as well as an improved, user-oriented technical infrastructure will be essential for achieving a cultural change towards an environment in which the effective use and real-time interchange of large datasets is common-place. Finally, the development of best practices for standardised data reporting and exchange, driven by expert committees, will be a crucial step towards making geo- and cosmochemical data more Findable, Accessible, Interoperable and Reusable by both humans and machines (FAIR).
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...