ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1615-6102
    Keywords: Helianthus annuus ; Embryo ; Epidermis ; Protoderm ; Phenylalkylamine ; Ion channel
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A fluorescently labeled phenylalkylamine, DM-Bodipy PAA, was used as a probe for the in vivo detection of ion channels in embryonic and nonembryonic tissues of sunflower. Zygotic embryos, somatic embryos, callus, leaves, roots, and shoots were analysed. Fluorescence intensity in the tissues was determined with cytofluorometry and confocal microscopy. DM-Bodipy PAA intensively labeled the protoderm and epidermis cells in both zygotic and somatic embryos. Callus cultures exhibited labeling on sites where somatic embryos developed. Labeling was, however, very weak in leaves, shoots, and roots, except in the root cap and in the epidermis of the root. Considering that the location of phenylalkylamine binding sites is related to the distribution of ion channels in both animal and plant cells, the high intensity of labeling observed in the protoderm and epidermis of zygotic and somatic embryos as well as in protoderm, epidermis, and caps of root tips, is consistent with the role these tissues may play in ion exchange with the environment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1615-6102
    Keywords: Arabidopsis thaliana ; Primordia timing ; Somatic embryogenesis ; In vitro culture ; Structure ; Microscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Seeds of theArabidopsis thaliana mutant primordia timing (pt) were germinated in 2,4-dichlorophenoxyacetic acidcontaining liquid medium. The seedlings formed somatic embryos and nonembryogenic and embryogenic callus in vitro in a time period of approximately two to three weeks. Embryogenesis and callus formation were monitored with respect to origin, structure, and development. Ten days after germination globular structures appeared in close vicinity of and on the shoot apical meristem (SAM). Somatic embryos formed either directly on the SAM region of the seedling or indirectly on embryogenic callus that developed at the SAM zone. Globular structures developed along the vascular tissue of the cotyledons as well, but only incidentally they formed embryos. Upon deterioration, the cotyledons formed callus. Regular subculture of the embryogenic callus gave rise to high numbers of somatic embryos. Such primary somatic embryos, grown on callus, originated from meristematic cell clusters located under the surface of the callus. Embryos at the globular and heart-shape stage were mostly hidden within the callus. Embryos at torpedo stage appeared at the surface of the callus because their axis elongated. Secondary somatic embryos frequently formed directly on primary ones. They preferentially emerged from the SAM region of the primary somatic embryos, from the edge of the cotyledons, and from the hypocotyl. We conclude that the strong regeneration capacity of thept mutant is based on both recurrent and indirect embryogenesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2048
    Keywords: Brassica ; Embryogenesis ; Heat shock ; Microspore ; Pollen ; Rapeseed
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Elevation of the culture temperature to 32°C for approximately 8 h can irreversibly change the developmental fate of isolatedBrassica napus microspores from pollen development to embryogenesis. This stress treatment was accompanied by de-novo synthesis of a number of heat-shock proteins (HSPs) of the 70-kDa class: HSP68 and HSP70. A detailed biochemical and cytological analysis was performed of the HSP68 and HSP70 isoforms. Eight HSP68 isoforms, one of which was induced three fold by the stress treatment, were detected on two-dimensional immunoblots. Immunocytochemistry revealed a co-distribution of HSP68 with DNA-containing organelles, presumably mitochondria. Six HSP70 isoforms were detected, one of which was induced six fold under embryogenic culture conditions. During normal pollen development, HSP70 was localized in the nucleoplasm during the S phase of the cell cycle, and predominantly in the cytoplasm during the remainder. Induction of embryogenic development in late unicellular microspores was accompanied by an intense anti-HSP70 labeling of the nucleoplasm during an elongated S phase. In early bicellular pollen the nucleus of the vegetative cell, which normally does not divide and never expresses HSP70, showed intense labeling of the nucleoplasm with anti-HSP70 after 8 h of culture under embryogenic conditions. These results demonstrate a strong correlation between the phase of the cell cycle, the nuclear localization of HSP70 and the induction of embryogenesis. As temperature stress alone is responsible for the induction of embryogenic development, and causes an altered pattern of cell division, there might be a direct involvement of HSP70 in this process.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2048
    Keywords: Brassica ; Embryogenesis ; Heat shock ; Microspore ; Pollen ; Rapeseed
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Elevation of the culture temperature to 32°C for approximately 8 h can irreversibly change the developmental fate of isolated Brassica napus microspores from pollen development to embryogenesis. This stress treatment was accompanied by de-novo synthesis of a number of heat-shock proteins (HSPs) of the 70-kDa class: HSP68 and HSP70. A detailed biochemical and cytological analysis was performed of the HSP68 and HSP70 isoforms. Eight HSP68 isoforms, one of which was induced three fold by the stress treatment, were detected on two-dimensional immunoblots. Immunocytochemistry revealed a co-distribution of HSP68 with DNA-containing organelles, presumably mitochondria. Six HSP70 isoforms were detected, one of which was induced six fold under embryogenic culture conditions. During normal pollen development, HSP70 was localized in the nucleoplasm during the S phase of the cell cycle, and predominantly in the cytoplasm during the remainder. Induction of embryogenic development in late unicellular microspores was accompanied by an intense anti-HSP70 labeling of the nucleoplasm during an elongated S phase. In early bicellular pollen the nucleus of the vegetative cell, which normally does not divide and never expresses HSP70, showed intense labeling of the nucleoplasm with anti-HSP70 after 8 h of culture under embryogenic conditions. These results demonstrate a strong correlation between the phase of the cell cycle, the nuclear localization of HSP70 and the induction of embryogenesis. As temperature stress alone is responsible for the induction of embryogenic development, and causes an altered pattern of cell division, there might be a direct involvement of HSP70 in this process.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Sexual plant reproduction 6 (1993), S. 127-132 
    ISSN: 1432-2145
    Keywords: Cell wall ; Cytoskeleton ; Endosperm cellularization ; Microtubules ; Ranunculus sceleratus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Endosperm cellularization in Ranunculus sceleratus was studied in terms of the initiation of cell-wall formation in the coenocytic endosperm. The first endosperm cell walls were in an anticlinal position relative to the cell wall of the embryo sac and originated from the cell plates and not from wall ingrowths from the embryo-sac wall itself. Alveolar endosperm was formed 3 days after pollination. Microtubules were associated with the freely growing wall ends of the anticlinal walls and were observed in various orientations that generally ranged from angles of 45 ° to 90 ° to the plane of the wall. They were absent in the regions where vesicles had already fused. These microtubules may function in maintaining the growth and the direction of growth of the anticlinal wall until cellularization is completed. At the site where three neighbouring alveoli share their freely growing wall ends, remarkable configurations of microtubules were observed: in each alveolus, microtubules ran predominantly parallel to the bisector of the angle formed by the common walls. These microtubules may form a physically stable framework and maintain the direction of growth of the wall edges. It is concluded that the growing edge of the anticlinal endosperm wall and its associated microtubules are a special continuum of the original phragmoplast that gave rise to the anticlinal wall.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 55 (1997), S. 630-641 
    ISSN: 0006-3592
    Keywords: nitrification ; immobilized cells ; Nitrosomonas europaea ; substrate limitation ; biomass death ; staining techniques ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The dynamics of growth and death of immobilized Nitrosomonas europaea were studied. For this, the death rate of suspended cells was determined in the absence of ammonium or oxygen by following the loss of respiration activity and by fluorescein-diacetate (FDA)/lissamine-green staining techniques. The death rates obtained (1.06 × 10-6 s-1 or 4.97 × 10-6 s-1 in the absence of oxygen or ammonium, respectively) were incorporated in a dynamic growth model and the effects on the performance of the immobilized-cell process illustrated by model simulations.These model simulations and experimental validation show that if decay of biomass occurs the biomass concentration in the center of the bead decreases. As a result, the systems react slower to changes in substrate concentrations than if all cells remain viable.To show that cells in the center of the bead died, the FDA and lissamine-green staining techniques were adapted for immobilized cells. It was shown that biomass decay occurred, especially in the center of the bead; the amount of cells decreased there, and the remaining cells were all stained with lissamine green indicating cell death. After the substrate availability was decreased, also cells near the surface of the bead lost their viability. The number of viable cells increased again after increasing the substrate concentration as the result of cell multiplication. At low substrate concentrations and low hydraulic retention times, as for example in the treatment of domestic wastewater, the death rate of cells is thus an important parameter for the performance of the immobilized-cell system. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 630-641, 1997.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1615-6102
    Keywords: Bromodeoxyuridine incorporation ; Cucumis sativus ; DNA synthesis ; Germination ; Microtubular cytoskeleton ; β-Tubulin accumulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Resumption of DNA synthetic activities and β-tubulin accumulation was studied in embryo organs of germinating cucumber (Cucumis sativus L.) seeds. Flow-cytometric analysis indicated the existence of 2C, 4C, and 8C nuclei in the radicle of mature embryos, whereas in cotyledons most of the cells contained nuclei with 2C DNA content. Upon imbibition of water, nuclear DNA replication was initiated in the radicle within 15 h, subsequently spreading towards the cotyledons. Bromodeoxyuridine incorporation preceded detectable changes in the relative amounts of DNA, implying the occurrence of putative DNA repair. Organellar DNA synthesis occurred independently of the nuclear DNA synthetic cycle. Western blotting and immunohistochemical localization demonstrated that the constitutive level of β-tubulin originated from preserved β-tubulin granules. During imbibition, disappearance of fluorescent tubulin granules, accumulation of β-tubulin, and formation of microtubular cytoskeleton were found in the radicle, but not in the cotyledon areas. Mitosis only occurred after radicle protrusion at 21 h of imbibition. It is concluded that the differences in the initiation and progress of these cellular and molecular events are associated with the discrete behaviors of the radicle and the cotyledons upon imbibition. The formation of cortical microtubular cytoskeleton and the accumulation of tubulins are important features in preparation of radicle protrusion, whereas DNA synthesis may contribute to postgerminative growth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1615-6102
    Keywords: Cytoskeleton ; Gibberellin ; In vitro culture ; Solanum tuberosum ; Tuber formation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary An in vitro system for tuber formation was used to study early morphological and cytological changes occurring during tuber formation in potatoes, with special emphasis on the orientation of the microtubular cytoskeleton, visualized immunocytochemically. Axillary buds from potato plants were cultured in the presence or absence of gibberellin (GA), resulting in either tuber formation (without GA) or shoot formation (GA added). Tuber formation in the absence of GA was highly synchronous in individual buds, enabling the dissection of various aspects of tuberization. Under both conditions, starch started to accumulate. In the absence of GA, starch levels rapidly increased, concomitantly with tuber formation, whereas it slightly decreased in the presence of GA. Up to 4 days, the cortical MTs in the cells were oriented perpendicular to the longitudinal axis of the developing buds. Under tuber-inducing conditions this orientation changed into a longitudinal one at day 5. This change preceded a change in the direction of cell expansion. In the presence of GA no such reorientation was observed, cells continued to grow longitudinally, and a stoloniferous shoot was formed. The cytoskeletal changes preceded the visible swelling of the buds, observed after day 5, demonstrating that the reorientation of the microtubular cytoskeleton is one of the earliest steps observed so far in tuber formation in potatoes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...