ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2021-01-08
    Description: For the first time, data on stability of stationary convective filtration within infinite horizontal layer of snow covering the flat surface of floating ice is presented in this article. An analytical solution of the linearized problem was obtained with the use of the Galerkin method, and the parametric analysis of the problem was performed. It was found that the stability criteria (Rayleigh filtration numbers) obtained with consideration for the heat exchange of snow cover with the atmosphere did not exceed the known value of 4π2 for a horizontal porous layer with impermeable isothermal boundaries. As expected, the interaction with the atmosphere has the most significant impact on the critical Rayleigh numbers, while influence of variations in snow density and ice thickness and the thickness of the underlying layer of ice are small. Based on data of ice and meteorological observations made in the winter of 2015/16 in the Western part of the Laptev Sea together with calculations of the fast ice evolution, the values and temporal variability of temperature gradients and the Rayleigh numbers in the snow cover were obtained using a thermodynamic model. It was found that both, the model and observed magnitudes, exceeded their critical values determined by solving the stability problem. The conclusion is made that the convective regime of the heat transfer does really exist in the snow cover, and thus its contribution to the thermal and mass balance of sea ice during winter period should be taken into account.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-22
    Description: Results of the ice and hydrological measurements carried out in the winter of 2014/15 in theTiksiGulf(Buor-KhayaBay) are described. These data served a basis for development of a conceptual thermodynamic model of seasonal freezing of the sea water layers and underlying bottom sediments in the sea-shore zone. The model uses two methods of localization of the phase transition zones: a classical (frontal) one is used for water, while another one within the range of temperatures – for the bottom. For real atmospheric conditions, we investigated specific features of the water freezing through in the shallow coastal zone of theLaptev Sea. The quantitative characteristics of the process were obtained. The calculations demonstrated that the distinguishing feature of the process is a stabilization of the ice thickness, taking place due to essential increasing of a salinity of the sea water. As a result of this, a shallow water body does not frozen through down to the bottom at even the very low air temperatures. Cooled salt waters does not allow liquid to be frozen in pores of the bottom ground. Salinization of the under-ice water layer can cause the melting of fast ice in the shallow water with its simultaneous increase away from the coast. Ice formation in water layers and bottom sediments begins at the same time, although it proceeds differently at different depths. Due to salinization of the bottom ground a continuous frozen zone is not formed, and the whole layer of freezing precipitation is a two-phase (partially frozen) area. As a whole, the model estimates of the process parameters including the motions of the phase fronts agree with known data of direct measurements. Despite such conformity, the model data should be considered as only evaluative ones. If a bottom is flat, the horizontal mixing and advection, which are not reproduced by a one-dimensional model in principle, the actual salinity parameters will most likely not reach the calculated values. However, for small values of the tides in theBuor-KhayaBayand insignificant reverse flows of salt, effect of the last ones does not apparently exert significant influence on the intensity of cooling of the under-ice water layer as well as on the ice formation in upper layers of the bottom within such time scales as a season.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-01-07
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...