ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
  • 1
    Publication Date: 2011-02-04
    Description: Base cations exert a large impact on various geochemical and geophysical processes both in the atmosphere and at the Earth surface. One of the essential roles of these compounds is impact on surface pH causing an increase in alkalinity and neutralizing the effects of acidity generated by sulphur and nitrogen deposition. During recent years anthropogenic emissions of base cations in the UK have decreased substantially, by about 70%, 78%, 75% and 48% for Na+, Mg2+, Ca2+ and K+, respectively, over the period 1990–2006. For the island regions, such as the UK, the main source of base cation particles is the aerosol produced from the sea surface. Here, the sea salt aerosol (SSA) emissions are calculated with parameterisations proposed by Mårtensson et al. (2003) for ultra fine particles, Monahan et al. (1986) for fine particles and Smith and Harisson (1998) for coarse particles continuously with a 0.1 μm size step using WRF-modelled wind speed data at a 5 km × 5 km grid square resolution with a 3 h time step for two selected years 2003 and 2006. SSA production has been converted into base cation emissions, with the assumption that the chemical composition of the particle emitted from the sea surface is equal to the chemical composition of sea water, and used as input data in the Fine Resolution Atmospheric Multi-pollutant Exchange Model (FRAME). FRAME model annual mean concentrations and total wet deposition at a 5 km × 5 km grid resolution, are compared with concentrations in air and wet deposition from the National Monitoring Network and measurements based estimates of UK deposition budget. The correlation coefficient for wet deposition achieves high values (R = 0.8) for Na+ and Mg2+, whereas for Ca2+ the correlation is poor (R 〈 0.3). Base cation concentrations are also represented well, with some overestimations on the west coast and underestimations in the centre of the land.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-12-15
    Description: The Fine Resolution Atmospheric Multi-pollutant Exchange model (FRAME) has been applied to model the spatial distribution of nitrogen deposition and air concentration over the UK at a 1 km spatial resolution. The modelled deposition and concentration data were gridded at resolutions of 1 km, 5 km and 50 km to test the sensitivity of calculations of the exceedance of critical loads for nitrogen deposition to the deposition data resolution. The modelled concentrations of NO2 were validated by comparison with measurements from the rural sites in the national monitoring network and were found to achieve better agreement with the high resolution 1 km data. High resolution plots were found to represent a more physically realistic distribution of nitrogen air concentrations and deposition resulting from use of 1 km resolution precipitation and emissions data as compared to 5 km resolution data. Summary statistics for national scale exceedance of the critical load for nitrogen deposition were not highly sensitive to the grid resolution of the deposition data but did show greater area exceedance with coarser grid resolution due to spatial averaging of high nitrogen deposition hot spots. Local scale deposition at individual Sites of Special Scientific Interest and high precipitation upland sites was sensitive to choice of grid resolution of deposition data. Use of high resolution data tended to generate lower deposition values in sink areas for nitrogen dry deposition (Sites of Scientific Interest) and higher values in high precipitation upland areas. In areas with generally low exceedance (Scotland) and for certain vegetation types (montane), the exceedance statistics were more sensitive to model data resolution.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-01-01
    Description: We have evaluated three prognostic variables in Weather Research and Forecasting (WRF) model, mean daily temperature, daily maximum temperature, and daily minimum temperature using 9 months of model simulations at 36 and 12 km resolution, and compared the results with 1182 observational sites in north and central Europe. The quality of the results is then determined in the context of the governing variables used in crop science, forestry, and aerobiological models. We use the results to simulate the peak of the birch pollen season (aerobiology), growth of barley (crop science), and development of the invasive plant pathogenHymenoscyphus pseudoalbidus(the cause of ash-dieback). The results show that the crop and aerobiological models are particularly sensitive to grid resolution and much higher quality is obtained from the 12 km simulations compared to 36 km. The results also show that the summer months have a bias, in particular for maximum and minimum temperatures, and that the low/high bias is clustered in two areas: continental and coastal influenced areas. It is suggested that the use of results from meteorological models as an input into biological models needs particular attention in the quality of the modelled surface data as well as the applied land surface modules.
    Print ISSN: 1687-9309
    Electronic ISSN: 1687-9317
    Topics: Geosciences , Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-08-26
    Description: The study focuses on the application of a dynamic ammonia emission into the Weather Research and Forecasting Chemistry model (WRF-Chem) and the influence on the simulated ammonia concentrations and the overall model performance. We have focused on agricultural ammonia sources and have analysed both hourly and daily patterns of ammonia emissions and concentrations at measurement sites located in agricultural areas or influenced by this activity. For selected episodes, we have also investigated the 3-D patterns of the ammonia concentrations in the atmosphere. The application of the dynamic ammonia emission into the WRF-Chem model (the "DYNAMIC" simulation) results in an improvement of the modelled daily ammonia concentrations in comparison to a static approach (the "BASE" simulation), which is currently widely used in chemical transport models. In the case of hourly resolution, we have observed an improvement for the DYNAMIC approach for the winter and autumn seasons, but for the entire year the modelled hourly ammonia peaks are shifted toward the afternoon hours if compared with measurements. This study indicates that the current description of the diurnal cycle of the ammonia concentration from fields is not accurate and more research is needed in order to improve the processes that describe the emission from fertilised fields. The results suggest that the governing processes in relation to the diurnal cycle are the atmospheric mixing and the emission strength. Therefore, an improved description of the diurnal profile of ammonia concentrations within atmospheric models requires a better description of the planetary boundary layer height and a stronger daily pattern of ammonia emission, e.g. through increased evaporation or increased fluxes from the surface.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-09-22
    Description: Base cations exerts a large impact on various geochemical and geophysical processes both in the atmosphere and at the Earth surface. One of the essential roles of these compounds is impact on surface pH causing an increase in alkalinity and neutralizing the effects of acidity generated by sulphur and nitrogen deposition. During recent years anthropogenic emissions of base cations in the UK have decreased substantially, by about 70% for Na+, 78% for Mg2+, 75% for Ca2+ and about 48% for K+ for the period 1990–2006. For the island regions, such as the is UK, the main source of base cation particles is the aerosol produced from the sea surface. Here, the sea salt aerosol (SSA) emissions are calculated with parameterisations proposed by Maårtensson et al. (2003); ultra fine particles, Monahan et al. (1986); fine particles and Smith and Harisson (1998); coarse particles continuously with a 0.1 μ m size step using WRF-modelled wind speed data at a 5 km × 5 km grid square resolution with a 3 h time step for two selected years 2003 and 2006. SSA production has been converted into base cation emissions, with the assumption that the chemical composition of the particle emitted from the sea surface is equal to the chemical composition of sea water, and used as input data in the Fine Resolution Atmospheric Multi-pollutant Exchange Model (FRAME). FRAME model results, yearly mean concentrations and total wet deposition at a 5 km × 5 km grid resolution, are compared with concentrations in air and wet deposition from the National Monitoring Network and measurements based estimates of UK deposition budget. The correlation coefficient for wet deposition achieves high values for Na+ and Mg2+, and for Ca2+ there is significant scattering. Base cation concentration is also represented well, with some overestimations on the west coast and underestimations in the centre of the land.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-01-30
    Description: A Europe-wide dynamic ammonia (NH3) emissions model has been applied for one of the large agricultural countries in Europe, and its sensitivity on the distribution of emissions among different agricultural functions was analysed by comparing with observed ammonia concentrations and by implementing all scenarios in a chemical transport model (CTM). The results suggest that the dynamic emission model is most sensitive to emission from animal manure, in particular how animal manure and its application on fields is connected to national regulations. In contrast, the model is most robust with respect to emission from buildings and storage. To incorporate the national regulations, we obtained activity information on agricultural operations at the sub-national level for Poland, information about infrastructure on storages, and current regulations on manure practice from Polish authorities. The information was implemented in the existing emission model and was connected directly with the NWP calculations from the Weather Research and Forecasting model (WRF-ARW). The model was used to calculate four emission scenarios with high spatial (5 km × 5 km) and temporal resolution (3 h) for the entire year 2010. In the four scenarios, we have compared the Europe-wide default model settings against (1) a scenario that focuses on emission from agricultural buildings, (2) the existing emission method used in WRF-Chem in Poland, and (3) a scenario that takes into account Polish infrastructure and agricultural regulations. The ammonia emission was implemented into the CTM FRAME and modelled ammonia concentrations was compared with measurements. The results suggest that the default setting in the dynamic model is an improvement compared to a non-dynamical emission profile. The results also show that further improvements can be obtained on the national scale by replacing the default information on manure practice with information that is connected with local practice and national regulations. Implementing a dynamical approach for simulation of ammonia emission is a viable objective for all CTM models that continue to use fixed emission profiles. Such models should handle ammonia emissions in a similar way to other climate-dependent emissions (e.g. biogenic volatile organic compounds). Our results, compared with previous results from the DEHM and the GEOS-CHEM models, suggest that implementing dynamical approaches improves simulations in general, even in areas with limited information about the location of the agricultural fields, livestock and agricultural production methods such as Poland.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-05-03
    Description: The Fine Resolution Atmospheric Multi-pollutant Exchange model (FRAME) was applied to model the spatial distribution of reactive nitrogen deposition and air concentration over the United Kingdom at a 1 km spatial resolution. The modelled deposition and concentration data were gridded at resolutions of 1 km, 5 km and 50 km to test the sensitivity of calculations of the exceedance of critical loads for nitrogen deposition to the deposition data resolution. The modelled concentrations of NO2 were validated by comparison with measurements from the rural sites in the national monitoring network and were found to achieve better agreement with the high resolution 1 km data. High resolution plots were found to represent a more physically realistic distribution of reactive nitrogen air concentrations and deposition resulting from use of 1 km resolution precipitation and emissions data as compared to 5 km resolution data. Summary statistics for national scale exceedance of the critical load for nitrogen deposition were not highly sensitive to the grid resolution of the deposition data but did show greater area exceedance with coarser grid resolution due to spatial averaging of high nitrogen deposition hot spots. Local scale deposition at individual Sites of Special Scientific Interest and high precipitation upland sites was sensitive to choice of grid resolution of deposition data. Use of high resolution data tended to generate lower deposition values in sink areas for nitrogen dry deposition (Sites of Scientific Interest) and higher values in high precipitation upland areas. In areas with generally low exceedance (Scotland) and for certain vegetation types (montane), the exceedance statistics were more sensitive to model data resolution.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-06-11
    Description: A Europe-wide dynamic ammonia (NH3) emissions model has been applied for one of the large agricultural countries in Europe, and its sensitivity on the distribution of emissions among different agricultural functions was analyzed by comparing with observed ammonia concentrations and by implementing all scenarios in a chemical transport model (CTM). The results suggest that the dynamic emission model is most sensitive to emissions from animal manure, in particular how animal manure and its application on fields is connected to national regulations. To incorporate the national regulations, we obtained activity information on agricultural operations at the sub-national level for Poland, information about infrastructure on storages and current regulations on manure practice from Polish authorities. The information was implemented in the existing emission model and was connected directly with calculations from the Weather Research and Forecasting model (WRF). The model was used to calculate four emission scenarios with high spatial (5 km × 5 km) and temporal resolution (3 h) for the entire year 2010. In the four scenarios, we have compared a constant emission approach (FLAT), scenario (1) against (2) a dynamic approach based on the Europe-wide default settings (Skjøth et al., 2011, scenario DEFAULT); (3) a dynamic approach that takes into account Polish practice and less regulation compared to Denmark (POLREGUL); (4) a scenario that focuses on emissions from agricultural buildings (NOFERT). The ammonia emission was implemented into the chemical transport model FRAME (Fine Resolution Atmospheric Multi-pollutant Exchange) and modelled ammonia concentrations were compared with measurements. The results for an agricultural area suggest that the default setting in the dynamic model is an improvement compared to a non-dynamical emission profile. The results also show that further improvements can be obtained at a national scale by replacing the default information on manure practice with information that is connected with local practice and national regulations. Implementing a dynamical approach for simulation of ammonia emission is a reliable but challenging objective for CTM models that continue to use fixed emission profiles.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-01-01
    Print ISSN: 1947-5705
    Electronic ISSN: 1947-5713
    Topics: Geosciences
    Published by Taylor & Francis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2009-02-10
    Print ISSN: 0936-577X
    Electronic ISSN: 1616-1572
    Topics: Geosciences , Physics
    Published by Inter-Research
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...