ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-12-19
    Description: Submarine landslides are common at glaciated continental margins. The onset of large-scale landslides coincides with the initiation of Northern Hemisphere glaciations in the Quaternary. This implies that processes related to glacial cycling provide favourable conditions for submarine landslides at high-latitude margins. Potential processes include glacial deposition patterns and enhanced seismicity. It is also possible that advances and retreats of ice sheets, a highly dynamic process in geological terms, makes slopes discernible to failure by modifying the stress regime. Here, we quantify this effect using 2D finite element modelling of a glaciated continental margin. Different model runs investigate the pore-pressure development in homogeneous, as well as layered, slopes during glaciation when loaded by an ice stream with one or more ice advances. Ice streams cause significant variations in excess pore pressure in the very shallow sediment sequences at the continental shelf. However, lateral fluid flow is not efficient enough to increase pore pressures significantly at the slope, where large-scale submarine slides are observed. Hence, while ice-sheet dynamics appear to favour the occurrence of shallow slides close to the shelf edge, ice sheets seem to be irrelevant for the generation of large-scale submarine landslides at the continental slope.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  (Master thesis), Christian-Albrechts-Universität, Kiel, 59 pp
    Publication Date: 2018-12-04
    Keywords: Course of study: MSc Marine Geosciences
    Type: Thesis , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    GSL (Geological Society of London)
    In:  In: Subaqueous Mass Movements and their Consequences: Advances in Process Understanding, Monitoring and Hazard. , ed. by Georgiopoulou, A. Special Publications Geological Society London, 500 . GSL (Geological Society of London), London, pp. 255-266.
    Publication Date: 2020-08-03
    Description: Submarine landslides are common at glaciated continental margins. The onset of large-scale landslides coincides with the initiation of Northern Hemisphere glaciations in the Quaternary. This implies that processes related to glacial cycling provide favourable conditions for submarine landslides at high-latitude margins. Potential processes include glacial deposition patterns and enhanced seismicity. It is also possible that advances and retreats of ice sheets, a highly dynamic process in geologic terms, makes slopes discernible to failure by modifying the stress regime. Here, we quantify this effect using 2D Finite Element modelling of a glaciated continental margin. Different model runs investigate the pore pressure development in homogeneous as well as layered slopes during glaciation when loaded by an ice stream with one or multiple ice advances. Ice streams cause significant variations in excess pore pressure in the very shallow sediment sequences at the continental shelf. However, lateral fluid flow is not efficient enough to increase pore pressures significantly at the slope, where large-scale submarine slides are observed. Hence, while ice sheet dynamics appear to favour the occurrence of shallow slides close to the shelf edge, ice sheets seem to be irrelevant for the generation of large-scale submarine landslides at the continental slope.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...