ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
  • 1
    Publication Date: 2023-12-06
    Description: We compared Centroid Moment Tensors (CMTs), calculated for large (Mw 〉5), shallow (〈30 km) seismic events to the orientations of seafloor lineaments (n = 4000) mapped throughout the Lau Basin, in the SW Pacific. Ship-based multibeam was combined with vertical gravity gradient data to provide comprehensive coverage to create the lineament map. By comparing the possible focal planes of the CMTs to the orientations of the lineaments, the most likely fault plane solutions were selected, thus classifying the faults and establishing the nature of the highly variable stress regimes in the basin. We resolved the strike, dip and dip direction of 308 faults, and classified 258 additional structures by fault type. The majority of the table was data downloaded from the Global Centroid Moment Tensor (GCMT) database (www.globalcmt.org: accessed October 2018). For more details about the column headers consult the GCMT database website. New data from this study include the latitude and longitude error estimates (in meters), the classified faults (column: 'fault_type'), and the stress domain (column: 'stress_domain'), allocated to each of the classified faults.
    Keywords: Area/locality; B010186B; B010285E; B010484C; B010783C; B010783E; B010903A; B011101E; B011398E; B011498H; B011683A; B011694B; B011694F; B011700C; B011700E; B011777B; B011800B; B012099A; B012300F; B012300I; B012385B; B012598A; B012699D; B012999A; B020201E; B020487B; B020494A; B020796B; B020901A; B021298F; B021581B; B021587A; B021696B; B022093C; B022102F; B022387C; B022491B; B022503C; B022689B; B022787B; B030395E; B030601B; B030880A; B030894B; B031198D; B031293F; B031387A; B031387B; B031387E; B031393C; B031481A; B031487C; B031692A; B031992C; B031998A; B032003A; B032103D; B032377B; B032377C; B032377D; B032596A; B032682D; B032780A; B032780B; B032786A; B032882D; B032893B; B032982B; B032986B; B033002A; B033091A; B040691B; B040980A; B040991B; B041083C; B041201E; B041586A; B041780A; B041991C; B042088C; B042186A; B042294B; B042585D; B042700A; B042800B; B042879B; B042890B; B042979A; B050186A; B050198A; B050280D; B050392A; B050601C; B051486G; B051802C; B051981B; B052102D; B053179B; B060583A; B060598C; B060790C; B061186B; B061382A; B061479B; B061481A; B061492F; B061699D; B061797B; B061895B; B061895C; B062392E; B062502B; B062601M; B070188A; B070188B; B070689A; B070900A; B071684B; B071789A; B071997B; B072202A; B072602B; B072603D; B073101E; B080178A; B080497D; B080586A; B080586B; B080799A; B081087A; B081095B; B081286A; B081295A; B081299A; B081388C; B081694H; B081696C; B081696F; B082185A; B082290B; B082486A; B082486C; B082500A; B082577A; B082603B; B082686B; B082788B; B082790A; B082903B; B082995B; B083195C; B090684A; B090695A; B090882C; B091081A; B091377A; B091395C; B091799C; B091899D; B092097G; B092390A; B092492E; B092497C; B092688E; B092695A; B092995A; B093082A; B100179B; B100285B; B100295B; B100482B; B100684A; B100696A; B101303E; B101384A; B101501A; B101802D; B101802E; B101982A; B102287E; B102290A; B102677A; B102677B; B102885C; B103093C; B103100E; B110187C; B110499B; B110598F; B110796A; B111082A; B111382A; B111494B; B111596B; B111696C; B111696F; B111784G; B111796C; B111796E; B111797A; B111997B; B112090C; B112479A; B113087B; B113088B; B120386A; B120491A; B120696E; B120796A; B120888A; B120888B; B121286A; B121286C; B121386A; B121985A; B122190A; B122285A; B122285B; B122383A; B122387A; B122791B; B122998A; back-arc basins; Body wave magnitude; Body waves, components; Body waves, shortest period; Body waves, stations; C010987B; C011298J; C011498E; C012204A; C020399A; C020991A; C021393D; C022304C; C022304E; C022490A; C030693G; C030799E; C031293D; C031387F; C032004G; C032504E; C041704C; C041793C; C051504D; C051583A; C061404A; C070278A; C080497C; C080897C; C082997B; C090382E; C091400B; C091783C; C092304C; C100480A; C101104F; C101302A; C101804A; C103100F; C110892B; C111004D; C112304C; C120301A; C121804G; C200502181525A; C200503132233A; C200504261133A; C200504261856A; C200505051011A; C200505111540A; C200507310419A; C200508071135A; C200508071354A; C200508071441A; C200508221648A; C200509041213A; C200510191410A; C200510291633A; C200512071934A; C200512130316A; C200512130732A; C200512161433A; C200512201148A; C200601290826A; C200602061134A; C200602260418A; C200603020747A; C200603051712A; C200603140529A; C200603171946A; C200603191254A; C200604031604A; C200604032027A; C200604251512A; C200604300703A; C200605211757A; C200606031326B; C200606131540A; C200606151715A; C200606151810A; C200606232150A; C200606270836A; C200606281322A; C200607020257A; C200607031949A; C200607041259A; C200608111807A; C200608111841A; C200608112020A; C200611061053A; C200611061124A; C200611210112A; C200611241711A; C200701160153A; C200702031647A; C200702050956A; C200702051016A; C200702051019A; C200703270803B; C200704050246A; C200704050325A; C200704130150A; C200705030630A; C200706140529A; C200706192036A; C200706231914A; C200706231920A; C200706231935A; C200706232102A; C200706232152A; C200706241015A; C200706260801A; C200707020054A; C200707090650A; C200707170939A; C200707180007A; C200707182351A; C200707191933A; C200707270351A; C200708222224A; C200709101004A; C200709140546A; C200709160010A; C200709180610A; C200709302011A; C200710050352A; C200710050417A; C200710300458A; C200711231222A; C200711231237A; C200712150246A; C200801201630A; C200801220009A; C200801220628A; C200801220755A; C200801221049A; C200801231220A; C200801240250A; C200801271528A; C200801302347A; C200801310152A; C200802011026A; C200802112320A; C200802141905A; C200803161956A; C200804151724A; C200804160035A; C200804251844A; C200806200424A; C200807221851A; C200807231255A; C200807231324A; C200807231354A; C200808141242A; C200808141510A; C200808240100A; C200809010531A; C200809010706A; C200809011032A; C200810030834A; C200810092308A; C200810232336A; C200810240058A; C200811201758A; C200901300347A; C200902080724A; C200902110931A; C200903070941A; C200903241813A; C200904142237A; C200904142329A; C200905110526A; C200905260049A; C200907020806A; C200907101604A; C200907211507A; C200908070242A; C200908070334A; C200908071734A; C200909210606A; C200910011739A; C200910011821A; C200910011840A; C200910031402A; C200910031410A; C200910051852A; C200910071310A; C200910141800A; C200910271201A; C200910281955A; C200911050600A; C200911050604A; C200911050611A; C200911291033A; C200912262123A; C200912291202A; C201001131621A; C201001131649A; C201001131651A; C201001171046A; C201002071312A; C201002071359A; C201002150529A; C201003280207A; C201003280251A; C201004042028A; C201007041338A; C201007041613A; C201007171620A; C201008300444A; C201009071249A; C201009071613A; C201009291225A; C201012011601A; C201012182224A; C201012201743A; C201012210736A; C201101211711A; C201101241331A; C201102031113A; C201102280224A; C201103262249A; C201103280847A; C201103310011A; C201103310259A; C201103310744A; C201103311631A; C201103311709A; C201104240601A; C201105021321A; C201105021922A; C201105171035A; C201105180810A; C201105240853A; C201105241630A; C201105300006A; C201106051635A; C201106051656A; C201106192126A; C201106280707A; C201107051902A; C201107061011A; C201107061344A; C201107061446A; C201107101847A; C201107102029A; C201107110054A; C201108030320A; C201108201027A; C201109222307A; C201109230901A; C201110280447A; C201110280913A; C201111130624A; C201111190541A; C201111190706A; C201112140048A; C201201041345A; C201201041804A; C201201041854A; C201201081951A; C201201082004A; C201201090006A; C201202220426A; C201202220804A; C201202221003A; C201202240202A; C201202260246A; C201202260508A; C201202260521A; C201202261117A; C201202261212A; C201202261349A; C201202261613A; C201202261628A; C201202261919A; C201202261937A; C201202270135A; C201202270301A; C201202270711A; C201202271434A; C201202271454A; C201203122148A; C201203192346A; C201203300618A; C201203312252A; C201205041758A; C201205051118A; C201205132246A; C201206041418A; C201206070023A; C201206170638A; C201206190036A; C201207060040A; C201207110357A; C201207230328A; C201208030508A; C201208030722A; C201208031945A; C201208100642A; C201208192054A; C201208200048A; C201208200215A; C201209271131A; C201209271139A; C201210121510A; C201210132236A; C201210220032A; C201210301059A; C201211032259A; C201211132323A; C201211220619A; C201211281016A; C201212120144A; C201212141652A; C201212271531A; C201301020819A; C201301031649A; C201301291329A; C201302152120A; C201302250259A; C201302250356A; C201304120048A; C201304262010A; C201305060733A; C201305310334A; C201306181313A; C201306301513A; C201307090124A; C201307290812A; C201309081000A; C201311141415A; C201312111809A; C201312151451A; C201401210129A; C201401220341A; C201401231209A; C201401261039A; C201401300446A; C201402230216A; C201402231654A; C201402231700A; C201402240119A; C201403070557A; C201403161115A; C201403281437A; C201403281454A; C201404250841A; C201405020746A; C201405131005A; C201405180058A; C201405180246A; C201405180638A; C201406062306A; C201406081108A; C201406091119A; C201406291552A; C201406291715A; C201406291824A; C201407041130A; C201407101732A; C201407212144A; C201408141846A; C201408271631A; C201409280623A; C201410051716A; C201410192047A; C201410201315A; C201410240452A; C201410280044A; C201410280315A; C201411051813A; C201411240417A;
    Type: Dataset
    Format: text/tab-separated-values, 42372 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-03-10
    Description: The endorheic Gaxun Nur Basin (GNB, local name: Ejina basin), which is located north of the Tibetan Plateau between the tectonic stress fields of the Qilian Shan and the Gobi-Tienshan, has evolved as a large inland basin filled with deltaic sediments during the past 250 ka. Here we present selected examples of geomorphological, sedimentological and geophysical evidence of tectonic activity and discuss a possible time frame of selected occurrences.We used medium-scale geomorphological mapping supported by analyses of Landsat ETM images, Corona images and an Aster Digital Terrain Model (Aster-DTM), combined with field surveys, dated sediment sections, and geophysical investigations using electromagnetic methods.The spatio-temporal distribution of radiocarbon-dated lake sediments within the northern GNB indicates a non-even distribution of neotectonic activity with west–east increasing amplitude of subsidence rates from 0.8–1.1 m/ka in the western part and more than three times higher rates in the eastern part.Our data indicate that tectonic has strongly amplified climate-induced environmental changes and may be regarded as an example of non-climatic pulses affecting lake-hydrology and basin development.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2017-02-06
    Print ISSN: 1752-0894
    Electronic ISSN: 1752-0908
    Topics: Geosciences
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    ESKA ; Cairn
    In:  Annales des Mines - Responsabilite et Environnement, 85 (1). pp. 14-18.
    Publication Date: 2019-09-23
    Description: Manganese nodules, Co-rich crusts, and Seafloor massive Sulfides (SMS) are commonly seen as possible future resources that could potentially add to the global raw materials supply. At present, a proper global assessment of these resources is not possible due to a severe lack of information regarding their size, global distribution, and composition. The sizes of the most prospective areas that need to be explored for a global resource assessment are vast. Future deep-sea minerals exploration has to provide higher-resolution data and at the same time needs to cover large areas of the seafloor in a fast and cost-efficient manner. While nodules and crusts are 2-dimensional occurrences and an assessment of their distribution at the seafloor itself seems sufficient, seafloor massive sulfides are 3-dimensional sites and a proper resource assessment will always require drilling. Here the development of methods to image the subseafloor and to recognize economically interesting sites prior to drilling is of importance.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Nature Research
    In:  Nature Geoscience, 10 (3). pp. 158-159.
    Publication Date: 2020-06-18
    Description: Mining the deep seabed is fraught with challenges. Untapped mineral potential under the shallow, more accessible continental shelf could add a new dimension to offshore mining and help meet future mineral demand.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  [Talk] In: Offshore Technology Conference 2017, 01.-04.05.2017, Houston, Texas, USA .
    Publication Date: 2017-10-23
    Description: The Red Sea is a textbook case of a modern-day oceanic rift basin forming as a result of continental break-up. A characteristic feature of this setting in the central and northern Red Sea are more than two dozens of isolated bathymetric depressions, "deeps", filled with brines derived from leaching of the early-breakup Miocene salt deposits that lie beneath the entire Red Sea. The Atlantis II Deep is the largest basin of this type in the axial rift zone of the Red Sea. A topographic depression enclosing a volume of an estimated 15 km3 at water depths from 1900 to 2200 m, the Atlantis II Deep contains layered fluids with temperatures of up to 66°C and salinities of up to 27%. Beneath the brines, up to 30 m of fine-grained metalliferous sediments have been accumulating for the past 23 000 years (Anschutz, 1995). Unlike those in modern hydrothermal systems at mid-ocean ridges, where most of the metals are expelled to the open ocean in buoyant hydrothermal plumes, metals in the Atlantis II Deep are trapped and precipitated beneath a 200-m-thick brine layer. These sediments show extremely high concentrations of zinc, copper, silver, and gold (90 Mt of dry salt-free sediment at Zn〉2%, Cu〉0.5%, Ag〉39 g/t., Au〉0.5 g/t.). While the mode of metal deposition found in the Atlantis II Deep is not known from anywhere else on the seafloor today, it has yet been widely suggested as an analog for many ancient sediment-hosted ore deposits (Laurila et al. 2015). From 1975 to 1981 the German company PREUSSAG was contracted by the Saudi-Sudanese Commission for the Exploitation of the Red Sea Resources to explore the Atlantis II Deep. The project was aimed at assessing the overall technical viability of recovering and processing metalliferous muds on board of a mining vessel. The program encompassed several sampling cruises, a pre-pilot mining test (PPMT), environmental surveys, a study of pre-mining environmental conditions, as well as an economical evaluation. However, despite a highly successful PPMT, economic interest in the project waned due to declining commodity prices in the early 1980s. A substantial data set was derived from this campaign, including several kilometers of well preserved sediment cores and 〉20 000 pages of analog information. Utilizing this information, several GIS-based data mining efforts were carried out in recent years, driven by renewed interest in developing this unique resource. Our presentation will discuss results from these efforts and focus on the technical, economic and environmental boundary conditions of ocean mining of metalliferous sediments. Recently acquired geophysical data in the central Red Sea provide an unprecedented level of ground truth to historic data on Atlantis II.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  (PhD/ Doctoral thesis), Johann Wolfgang Goethe-Universität, Frankfurt am Main, 220 pp
    Publication Date: 2019-09-23
    Description: Im Rahmen dieser Dissertation wurde die spätpleistozäne und holozäne Landschaftsentwicklung im Umfeld der im Tal des Wadis Chuera in Nordsyrien liegenden bronzezeitlichen Siedlung Tell Chuera untersucht. Durch die Kombination von hochgenauen Vermessungen, Satellitenbildauswertungen und Untersuchungen der Wadisedimente konnten mehrere flussgeschichtliche Entwicklungsphasen erarbeitet und in einen chronostratigraphischen Rahmen eingeordnet werden. Über ein grobsandig-kiesiges System eines verzweigten Flusses wurden mindestens bis ins Obere Pleistozän mächtige Kieslagen im Untersuchungsgebiet sedimentiert. Innerhalb einer fossilen Rinne abgelagerte lössähnliche Sedimente, welche die Kiesfolgen partiell überlagern, konnten relativchronologisch ins Obere Pleistozän gestellt werden und dokumentieren vermutlich eine trockene Phase. Durch die mit scharfer Diskordanz über den Kiesen abgelagerten pelitischen Hochflutsedimente wird ein abrupter flussdynamischer Umbruch von dem eines ursprünglich verzweigten Flusses zu dem eines mäandrierenden Flusses mit Hochflutsedimentation nachgewiesen. IRSL-Datierungen stellen den Beginn der Ablagerung der Hochflutsedimente ins letzte Glazial. Der größte Teil der Sedimente wurde jedoch im frühen und mittleren Holozän (ca. 9 und 5 kaBP) abgelagert, so dass zu Beginn der Hauptsiedlungsphase am Tell Chuera (3. Jahrtausend v.Chr.) die Oberfläche der Überschwemmungsebene ihr heutiges Niveau nahezu erreicht hatte. Bis dahin führten großflächige Überschwemmungen zur Hochflutsedimentation in der Aue. Ein erneuter Wechsel der fluvialen Geomorphodynamik und der Sedimentationsverhältnisse zeigt sich darin, dass die letzten ca. 5000 Jahre keine nennenswerte Sedimentation in der Hochflutebene zu verzeichnen war. Es kam zu einer bis heute stattfindenden, lateralen Verlagerung der Mäander des Wadis und damit der Aufarbeitung von Teilen der Kiese und Hochflutsedimente. Siedlungsspuren im Wadiverlauf weisen auf eine Periodizität des Abflusses des Wadis Chuera zwischen etwa 4.7 und 4.2 kaBP hin. Die Theorie einer verstärkten Akkumulation von Kolluvien der Rahmenhöhen im Wadital als direkte Folge eines steigenden Siedlungsdrucks während der Hauptsiedlungsphase konnte widerlegt werden. Vielmehr handelt es sich bei den vermeintlichen Kolluvien um fluvial aufgearbeitete Hochflutsedimente. Anthropogene Eingriffe in den Landschaftshaushalt lassen sich in Form von Kalkkrustensteinbrüchen und einem komplexen Wegenetz nachweisen.
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  [Talk] In: EAGE/DGG Workshop on Deep Mineral Exploration, 18.03.2016, Münster, Germany .
    Publication Date: 2016-11-30
    Description: Deep-sea mining is seen as a potential way to provide future secure metal supply to global markets. The current rush to the seafloor in areas beyond national jurisdiction indicates that sound knowledge of the geological characteritics of the various commodities, a realistic resource assessment, and a social and political discussion about the cons and pros of their exploitation that is based on facts, not myths, is required. This contribution provides the most recent information on global deep-sea mineral resources and sets the stage for detailed talks in this session.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  [Poster] In: GeoBerlin 2015, 04.-07.10.2015, Berlin, Germany .
    Publication Date: 2016-11-30
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...