ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2022-03-21
    Description: Heterogeneous data, different definitions and incompatible models are a huge problem in many domains, with no exception for the field of energy systems analysis. Hence, it is hard to re-use results, compare model results or couple models at all. Ontologies provide a precisely defined vocabulary to build a common and shared conceptualisation of the energy domain. Here, we present the Open Energy Ontology (OEO) developed for the domain of energy systems analysis. Using the OEO provides several benefits for the community. First, it enables consistent annotation of large amounts of data from various research projects. One example is the Open Energy Platform (OEP). Adding such annotations makes data semantically searchable, exchangeable, re-usable and interoperable. Second, computational model coupling becomes much easier. The advantages of using an ontology such as the OEO are demonstrated with three use cases: data representation, data annotation and interface homogenisation. We also describe how the ontology can be used for linked open data (LOD).
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-08-28
    Description: For an extensive decarbonization of district multi-energy systems, efforts are needed that go beyond today’s cogeneration of heat and power in district multi-energy systems. The multitude of existing technical possibilities are confronted with a large variety of existing multi-energy system configurations. The variety impedes the development of universal decarbonization pathways. In order to tackle the decarbonization challenge in existing and distinct districts, this paper calculates a wide range of urban district configurations in an extensive co-simulation based on domain specific submodels. A district multi-energy system comprising a district heating network, a power grid, and cogeneration is simulated for two locations in Germany with locally captured weather data, and for a whole year with variable parameters to configure a power-to-heat operation, building insolation/refurbishment, rooftop photovoltaic orientation, future energy demand scenarios, and district sizes with a temporal resolution of 60 s, in total 3840 variants. The interdependencies and synergies between the electrical low-voltage distribution grid and the district heating network are analysed in terms of efficiency and compliance with network restrictions. Thus, important sector-specific simulations of the heat and the electricity sector are combined in a holistic district multi-energy system co-simulation. The clearly most important impact on emission reduction and fuel consumption is a low heat demand, which can be achieved through thermal refurbishment of buildings. Up to 46 % reduction in CO2 emissions are possible using the surplus electricity from photovoltaics for power-to-heat in combination with central heat storage in the district’s combined heat and power plant. Domestic hot water heated by district heating network in combination with power-to-heat conversion distributed in the district reduces the load on the distribution power grid. Even though the investigated measures already improve the sustainability significantly, providing the energy needed for the production of synthetic fuels remains the crucial challenge on the further path towards net-zero.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...