ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1435-1536
    Keywords: Key words Latex ; Polymer colloid  ; Macroporous ; Polymer surface chemistry modification ; Polymer gels
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract We report synthesis and characterization of a macroporous polymeric material containing a covalently immobilized pore-surface phase of well-defined thickness, gel-phase porosity and organic functional group content. The pore surfaces of otherwise inert macroporous (32 μm mean pore size) ultrahigh-molecular-weight polyethylene (UHMWPE) are aminated throughout using a low-pressure flowing-discharge process to enable covalent immobilization of lightly cross-linked polymer colloid particles on all pore surfaces in the monolith. Solvent swelling and chemical derivitization of the covalently immobilized polymer colloid particles produce a pore-surface gel phase of well-defined thickness, organic amine content, and gel-phase porosity. The low degree of cross-linking in the polymer colloid particles prevents dissolution of the immobilized colloid in good solvents and enables the formation of pore-surface gel phases having high gel porosity on swelling in good solvents. The pore-surface amination introduced by the flowing discharge process varies by less than 17% through 5-mm thickness of the macroporous UHMWPE material. The properties of the pore-surface gel phase also vary by less than 17% through the cross section. The pore-surface immobilized polymer colloid particles swell by a factor of 10 in water and tetrahydrofuran after derivitization with polyethylene glycol.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1435-1536
    Keywords: Key words Macroporous ; Polymer colloid ; Polymer surface chemistry modification ; Polymer gels
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Covalently immobilized pore-surface gel phases were prepared in a functionalized macroporous ultra-high-molecular-weight polyethylene by covalent coupling of lightly cross-linked polymer colloid particles [50% styrene, 49.8% (chloromethyl)stryrene, 0.2% divinylbenzene] to the interstitial pore surfaces. Swelling the covalently coupled colloid particles in a good solvent followed by chemical derivitization resulted in an immobilized pore-surface gel phase rich in primary amine groups. The macromolecular reactivity and molecular size-exclusion characteristics of the aminated pore-surface gel phase were then determined using monofunctional, amine-reactive, poly (ethylene glycol)s (PEG). Pegylated pore-surface gel phases that ranged from 71% (10,000 molecular weight PEG) to 56% (40,000 molecular weight PEG) PEG by weight resulted from reaction of the aminated gel phase with the PEG probe molecules. The number of PEG molecules reacting with the aminated pore-surface gel phase depends only on the Flory radius (or radius of gyration) of the PEG molecule to the negative 2.49th power i.e., 1/R f 2.49, corresponding to a M−1.48 dependence. The immobilized and pegylated polymer colloid particles swell by a factor of 16–25 times the diameter of the original polymer colloid particles in water, thereby demonstrating that pegylation occurred though a substantial fraction of the volume of the immobilized colloid particles.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1999-11-03
    Print ISSN: 0372-820X
    Electronic ISSN: 1435-1536
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1999-06-08
    Print ISSN: 0372-820X
    Electronic ISSN: 1435-1536
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-19
    Description: The use of thermal atom test methods as a materials selection and screening technique for low-earth orbit (LEO) spacecraft is critically evaluated. The chemistry and physics of thermal atom environments are compared with the LEO environment. The relative reactivities of a number of materials determined in thermal atom environments are compared with those observed in LEO and in high-quality LEO simulations. Reaction efficiencies (cu cm/atom) measured in a new type of thermal atom apparatus are one-thousandth to one ten-thousandth those observed in LEO, and many materials showing nearly identical reactivities in LEO show relative reactivities differing by as much as a factor of eight in thermal atom systems. A simple phenomenological kinetic model for the reaction of oxygen atoms with organic materials can be used to explain the differences in reactivity in different environments. Certain speciic thermal atom test environments can be used as reliable materials screening tools.
    Keywords: CHEMISTRY AND MATERIALS (GENERAL)
    Type: IES, Journal (ISSN 0022-0906); 33; 50-59
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-08-31
    Description: The use of thermal atom test methods as a materials selection and screening technique for low-Earth orbit (LEO) spacecraft is critically evaluated. The chemistry and physics of thermal atom environments are compared with the LEO environment. The relative reactivities of a number of materials determined to be in thermal atom environments are compared to those observed in LEO and in high quality LEO simulations. Reaction efficiencies measured in a new type of thermal atom apparatus are one-hundredth to one-thousandth those observed in LEO, and many materials showing nearly identical reactivities in LEO show relative reactivities differing by as much as a factor of 8 in thermal atom systems. A simple phenomenological kinetic model for the reaction of oxygen atoms with organic materials can be used to explain the differences in reactivity in different environments. Certain specific thermal test environments can be used as reliable materials screening tools. Using thermal atom methods to predict material lifetime in LEO requires direct calibration of the method against LEO data or high quality simulation data for each material.
    Keywords: INORGANIC AND PHYSICAL CHEMISTRY
    Type: NASA, Goddard Space Flight Center, 15th Space Simulation Conference: Support the Highway to Space Through Testing; p 66-88
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: A Hughes 506 type communication satellite belonging to the Intelsat organization was marooned in low Earth orbit on March 14, 1990, following failure of the Titan third stage to separate properly. The satellite, Intelsat VI, was designed for service in geosynchronous orbit and contains several material configurations which are susceptible to attack by atomic oxygen. Analysis showed the silver foil interconnects in the satellite photovoltaic array to be the key materials issue because the silver is exposed directly to the atomic oxygen ram flux. The results are reported of atomic oxygen degradation testing of Intelsat VI type silver foil interconnects both as virgin material and in a configured solar cell element. Test results indicate that more than 80 pct. of the original thickness of silver in the Intelsat VI solar array interconnects should remain after completion of the proposed Space Shuttle rescue and/or reboost mission.
    Keywords: METALLIC MATERIALS
    Type: NASA-TM-102175 , S-625 , NAS 1.15:102175
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Instrumentation and Photography
    Type: JSC-CN-32647 , AstroRecon 2015: Conference on Spacecraft Reconnaissance of Asteroid and Comet Interiors; Jan 08, 2015 - Jan 10, 2015; Tempe, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-13
    Description: Galactic cosmic rays rain steadily from all directions onto asteroids and comets. The interaction of these high-energy ions produces a cascade of secondary particles, including muons, which can penetrate the solid interiors of small solar system bodies. Muons, which are produced in abundance in Earth's atmosphere, have been used to image large structures on Earth, including the Great Pyramids and the interior of volcanoes. In this study, we demonstrate that the transmitted flux of muons is sensitive to the interior density structure of asteroids and comets, less than a few hundred meters in diameter. Muonography has the potential to fill a critical gap in our knowledge of the deep interiors of small bodies, providing information needed for planetary defense, in situ resource utilization, and planetary science. We use Monte Carlo codes (MCNPX and FLUKA), which accurately model galactic cosmic ray showers, to explore systematic variations in the production of muons in solid surfaces. Results of these calculations confirm the scaling of muon production in Earth's atmosphere to solid regolith materials, as predicted by a simple, semi-empirical model. Muons are primarily produced in the top meter of the regoliths of asteroids and comets. Their rate of production is over three orders of magnitude lower than in Earth's atmosphere and depends strongly on regolith density. In practice, the use of muonography to characterize the interiors of small solar system bodies must overcome their low rate of production and their dependence on regolith density, which can vary over the surface of asteroids and comets. We show that interior contrast can be resolved using a muon telescope (hodoscope) with about 1 sq m aperture with integration times ranging from hours to weeks. Design concepts for a practical hodoscope that could be deployed in situ or on an orbiting spacecraft, are described. Regolith density within the top meter of an asteroid can be determined from radar observations. A concept for a pilot mission that combines remote radar measurements with in situ muonography of a near-Earth asteroid is presented. Perceived challenges and next steps for the development of the concept are described.
    Keywords: Lunar and Planetary Science and Exploration; Space Radiation
    Type: HQ-E-DAA-TN63086
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Gas phase reaction products produced by the interaction of high kinetic energy (1-3 eV) 3p ground state atomic oxygen (AO) with polyethylene and kapton were found to be H2, H2O, CO, and CO2 with NO being a possible secondary product from kapton. Hydrogen abstraction at high AO kinetic energy is postulated to be the key reaction controlling the erosion rate of kapton and polyethylene. An Arrhenius-like expression having an activation barrier of 0.4 eV can be fit to the data, which suggests that the rate limiting step in the AO/kapton reaction mechanism can be overcome by translational energy.
    Keywords: NONMETALLIC MATERIALS
    Type: Annual Meeting of the Minerals, Metals, and Materials Society; Feb 17, 1990 - Feb 22, 1990; Anaheim, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...