ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0827
    Keywords: Disodium (1-hydroxythylidene) diphosphonate ; Glass-ceramics-containing apatite ; wollastonite ; Detachment test ; Calcium-phosphorus-rich layer
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Summary It has been reported that bioactive glass-ceramics containing crystalline oxy- and fluoroapatite [Ca10(PO4)6(O,F2) and wollastonite (CaSiO3), chemical composition: MgO 4.6, CaO 44.9, SiO2 34.2, P2O5 16.3, CaF2 0.5 in weight ratio] bond to bone tissue through the formation of an apatite (a calcium and phosphorus-rich layer) on the ceramic surface. In this study, the influence of disodium (1-hydroxythylidene) diphosphonate (DHTD) on the bonding between bone and glass-ceramics containing apatite and wollastonite was investigated. Rectangular ceramic plates (15 mm x 10 mm x 2 mm, abraded with #2000 alumina powder) were implanted into the tibial bone of mature male rabbits. DHTD was administered daily by subcutaneous injection to groups 1–5: group 1–4 at doses of 20, 5.0, 1.0, and 0.1 mg/kg body wt/day for 8 weeks; and group 5 at a dose of 5 mg/kg body wt/day for 4 weeks. Group 6 was given injections of saline as a control. At 8 weeks after implantation, the rabbits were killed. The tibiae containing the ceramics were dissected out and used for a detachment test. The failure load, when an implant became detached from the bone, or when the bone itself broke, was measured. The failure loads for groups 1–6 were 0 kg, 0 kg, 8.08±2.43 kg, 7.28±2.07 kg, 5.56±1.63 kg, and 6.38±1.30 kg, respectively. Ceramic bonding to bone tissue was inhibited by a higher dose of DHTD (groups 1 and 2). In groups 3–6, SEM-EPMA showed a calcium-phosphorus-rich layer (Ca-P-rich layer) at the interface between the ceramic and bone tissue. However, at higher doses (5 and 20 mg), the Ca-P-rich layer was not observed on the surface of the glass-ceramic. DHTD suppressed both the formation of the Ca-P-rich layer on the surface of galss-ceramics and also apatite formation by bone. Thus, bonding between the Ca-P-rich layer of glass-ceramics and the apatite of bone tissue did not occur. This study verified that the apatite crystals in bone tissue bonded chemically to the Ca-P-rich layer on the surface glass-ceramics. The organic matrix (osteoid) did not participate in the bonding between bone and glass-ceramics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1013-9826
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: We have developed a porous titanium implant sintered with spacer particles (porosity =50 %, average pore size ± standard deviation = 303 ± 152 !m, yield compression strength = 100MPa).This porous titanium was successfully treated with chemical and thermal treatment that gives abioactive micro-porous titania layer on the titanium surface, and it is expected as effective biomaterialfor biological fixation on load bearing condition. In this study, ten adult female beagle dogsunderwent anterior lumbar interbody fusion at L6-7 using either BT-implant or non-treated implant(NT-implant), then followed by posterior interspinous wiring and facet screw fixation. Theradiographic evaluations were performed 1, 2 and 3 months postoperatively using X-ray fluoroscopy.Animals were sacrificed after 3 months postoperatively, and fusion status was evaluated by manualpalpation. Histological evaluation was also performed. Both histological and radiological evaluationrevealed that interbody fusion was achieved in 5 of 5 dogs (100%) in BT-group and 3 of 5 dogs (60%)in NT-group. In BT implants, we could observe a large amount of new bone formation from peripheryto the center of the implant, whereas in NT implants, fibrous tissue formation was still observed evenin the implants with successful fusion. The results of this study indicate that porous bioactive titaniumimplant will represent a new osteoconductive biomaterial with improved fusion characteristics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Key engineering materials Vol. 330-332 (Feb. 2007), p. 967-970 
    ISSN: 1013-9826
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A porous structure comprises pores and pore throats with a complex three-dimensionalnetwork structure, and many investigators have described the relationship between average poresize and the amount of bone ingrowth. However, the influence of network structure or pore throatsfor tissue ingrowth has rarely been discussed. Bioactive porous titanium implants with 48%porosity were analyzed using specific algorithms for three-dimensional analysis of interconnectivitybased on a micro focus X-ray computed tomography system. In vivo histological analysis wasperformed using the very same implants implanted into the femoral condyles of male rabbits for 6weeks. This matching study revealed that more poorly differentiated pores tended to have narrowpore throats, especially in their shorter routes to the outside. Data obtained suggest that this sort ofnovel analysis is useful for evaluating bone and tissue ingrowth into porous biomaterials
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Sulfonic groups (-SO3H) were covalently attached on different polymeric surfaces enabling them to induce apatite nucleation, for developing bioactive apatite-polymer composites with a bonelike 3-dimensional structure. High molecular weight polyethylene (HMWPE) and ethylene-co-vinyl alcohol co-polymer (EVOH) were used. The polymers were soaked in two types of sulphate-containing solutions with different concentrations, sulphuric acid (H2SO4) and chlorosulfonic acid (ClSO3H). To incorporate calcium ions into to the sulfonated polymers, thesamples were soaked in a saturated Ca(OH)2 solution for 24 hours. After soaking of the samples in a simulated body fluid (SBF), formation of an apatite layer on both surfaces was observed. The results obtained prove the validity of the proposed concept and show that the -SO3H groups are effective on inducing apatite nucleation on the surface of these polymers
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Materials science forum Vol. 293 (Aug. 1998), p. 65-82 
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 86 (2003), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Hydrolysis and polycondensation of poly(dimethylsiloxane) (PDMS), tetraethoxysilane (TEOS), and calcium nitrate, added with tetraisopropyltitanate (TiPT) at a TiPT/(TiPT + TEOS) molar ratio of 0.15, gave a pore- and crack-free transparent monolithic organic-inorganic hybrid material. It was speculated to be composed of a Si–O–Ti–O− network modified with methyl groups, and a Ca2+ ion ionically bonded to the network. The hybrid obtained showed a high apatite-forming ability on its surface in a simulated body fluid that is indicative of high bioactivity, as well as mechanical properties such as bending strength, Young's modulus, and strain at failure, analogous to those of the human cancellous bone. This hybrid material is expected to be useful as a new type of bioactive bone-repairing material.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: It has been shown that polydimethylsiloxane (PDMS)–CaO–SiO2–TiO2 and poly(tetramethylene oxide) (PTMO)–CaO–TiO2 hybrids form apatite on their surfaces in a simulated body fluid (SBF) and show mechanical properties similar to those of human cancellous bones. In the present study, changes, caused by soaking in SBF, were measured in the mechanical properties of PDMS–CaO–SiO2–TiO2 hybrids with different CaO and TiO2 contents and PTMO–CaO–TiO2 hybrids with different CaO contents. Significant decreases in the strength and strain at failure of the hybrids were observed for the PDMS–CaO–SiO2–TiO2 hybrids with high CaO or TiO2 contents and PTMO–CaO–TiO2 hybrids with a high CaO content after soaking in SBF for 4 w. This indicates that incorporation of a large amount of CaO component into the hybrids should result in the deterioration of the hybrids in the body environment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 85 (2002), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The process of apatite formation on the surface of Na2O–SiO2 glass in a body environment was investigated, mainly by X-ray photoelectron spectroscopy, as a function of soaking time in a simulated body fluid (SBF). The glass was found to release Na+ ions via exchange with H3O+ ions in the SBF to form Si—OH groups on its surface. These Si—OH groups induced apatite formation indirectly, by forming calcium silicate and amorphous calcium phosphate. The formation of the calcium silicate and amorphous calcium phosphate is attributed to electrostatic interactions between the Si—OH groups on the glass surface and the calcium and phosphate ions in the SBF.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 84 (2001), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Formation of bonelike apatite on zirconia gel in a simulated body fluid (SBF) with ion concentrations almost equal to those in human blood plasma, in modified SBF solutions to have increased pH values, and modified SBF solutions to have increased concentrations of calcium and phosphate ions has been investigated. The zirconia gel forms apatite on its surface in SBF, indicating that Zr-OH groups, abundant on the gel, act as effective apatite nucleation centers. Apatite formation is accelerated by increases in pH and in the concentration of calcium and phosphate ions, which is explained by an increase in the ionic activity product of the apatite in the SBF. These results suggest that zirconia ceramics may exhibit a bone-bonding ability by forming an apatite layer on their surfaces in the living body when they are modified to have many Zr-OH groups on their surfaces.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 82 (1999), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A chemically durable glass that contains a large amount of phosphorus is useful for in situ irradiation of cancers. It can be activated to be a β-emitter with a half-life of 14·3 d by using neutron bombardment. Microspheres of the activated glass that are injected to tumors can irradiate the tumors directly with β-rays without irradiating neighboring normal tissues. In the present study, P+ ions in various doses have been implanted into a pure silica glass in a plate form at 200 keV. Almost all the implanted phosphorus is present in the inner region of the glass rather than in the surface region, taking the form of phosphorus colloids for all the doses in the range of 5 × 1016-1 × 1018 cm-2. A large number of amorphous phosphorus colloid particles with diameters of 10-150 nm are formed in the silica glass that has been implanted with a dose of 1 × 1018 cm-2; these colloid particles are distributed widely in a layer that is centered at a depth of 200-250 nm. All the investigated glasses hardly release any phosphorus and silicon into water at a temperature of 95°C, even after 7 d. A silica glass that has been implanted with P+ ions at 200 keV with a dose of 1 × 1018 cm-2 is believed to be useful as a radiotherapy glass with sufficient phosphorus content and high chemical durability.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...