ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Boston, USA and Oxford, UK : Blackwell Publishers Inc
    Computational intelligence 17 (2001), S. 0 
    ISSN: 1467-8640
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Computer Science
    Notes: Diagnostic problem solving aims to account for, or explain, a malfunction of a system (human or other). Any plausible potential diagnostic solution must satisfy some minimum criteria relevant to the application. Often there will be several plausible solutions, and further criteria will be required to select the “best” explanation. Expert diagnosticians may employ different, complex criteria at different stages of their reasoning. These criteria may be combinations of some more primitive criteria, which therefore should be represented separately and explicitly to permit their flexible and transparent combined usage.In diagnostic reasoning there is a tight coupling between the formation of potential solutions and their evaluation. This is the essence of abductive reasoning. This article presents an abductive framework for diagnostic problem solving. Time-objects, an association of a property and an existence, are used as the representation formalism and a number of primitive, general evaluation criteria into which time has been integrated are defined. Each criterion provides an intuitive yardstick for evaluating the space of potential solutions. The criteria can be combined as appropriate for particular applications to define plausible and best explanations.The central principle is that when time is diagnostically significant, it should be modeled explicitly to enable a more accurate formulation and evaluation of diagnostic solutions. The integration of time and primitive evaluation criteria is illustrated through the Skeletal Dysplasias Diagnostician (SDD) system, a diagnostic expert system for a real-life medical domain. SDD's notions of plausible and best explanation are reviewed so as to show the difficulties in formalizing such notions. Although we illustrate our work by medical problems, it has been motivated by consideration of problems in a number of other domains (fermentation monitoring, air and ground traffic control, power distribution) and is intended to be of wide applicability.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Artificial intelligence review 4 (1990), S. 61-78 
    ISSN: 1573-7462
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of intelligent information systems 13 (1999), S. 73-120 
    ISSN: 1573-7675
    Keywords: temporal reasoning ; time model ; time-axis ; multiple granularities
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract In temporal reasoning there are two interrelated issues; how to model time per se and how to model occurrences. In medical temporal reasoning the need for multiple granularities and multiple conceptual temporal contexts arises in relation to a model of time. Some occurrence can then be expressed with respect to different temporal contexts. This paper presents a multidimensional and multigranular model of time for knowledge-based problem solving, primarily for medical applications. Both the conceptual issues and the design issues underlying the implementation of the proposed model are discussed. The presented model of time has been developed in the context of a time ontology for medical knowledge engineering, whose principal primitives are the time-axis and the time-object. The notion of a time-axis constitutes the primitive for the proposed model of time, while the notion of a time-object aims to integrate time with other essential forms of knowledge, such as structural and causal knowledge, in the expression of different types of occurrences, thus resulting in the integral embodiment of time in such occurrences. The notion of a time-object and the overall ontology of occurrences is given only a cursory mention in this paper. The focus of the paper is the time model. More specifically, the paper presents the notion of a time-axis in the context of the overall time ontology and discusses at length the two classes of time-axes, namely the atomic axes and the spanning axes. The assertion language which has been developed, for the entire ontology, for the expression of axioms (deductive rules and integrity constraints), attribute constraints and propagation methods is presented and illustrated. The implementation of the time model in terms of a layered object-based system is also presented.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2001-02-01
    Print ISSN: 0824-7935
    Electronic ISSN: 1467-8640
    Topics: Computer Science
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...