ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2013-07-23
    Description: In the Arctic and sub-Arctic, up to half of annual net ecosystem exchange (NEE) occurs during the snow season. Subnivean soil respiration can persist at a greater rate when the overlying snowpack has a lower thermal conductivity, and the rate of photosynthetic uptake at the start and end of the snow season can be diminished by fractional snow cover. Although recent studies have indicated that uncertainty in model estimates of NEE can be reduced by representing the influence of a modeled snowpack on soil respiration, models of NEE have not represented the influence of snowpack dynamics on processes such as subnivean photosynthesis or CO2 diffusivity, and have not used remote sensing observations to characterize snow season processes. We therefore: (1) review snow season processes and their effects on NEE; (2) assess the suitability of cryospheric remote sensing approaches for models of NEE; and (3) suggest strategies for representing snow season processes in models of NEE. Strategies include: using observations of fractional snow cover in spring and fall to restrict estimates of photosynthetic uptake; combining observations of snow accumulation and soil freeze/thaw with observations of air temperature to generate more realistic estimates of soil temperature and soil respiration; and using observations of depth to estimate the influence of snow accumulation and tree wells on soil respiration. Including remote sensing observations of snow properties in models of NEE could reduce uncertainty in snow season estimates of NEE, resulting in a better understanding of the northern carbon cycle and how it is responding to climate-driven changes in the interconnected biospheric, atmospheric and cryospheric systems.
    Print ISSN: 0309-1333
    Electronic ISSN: 1477-0296
    Topics: Geography
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-08-01
    Description: The purpose of this paper is to analyse the following strategies used to assess productivity of vegetation: (1) measuring LAI and fPAR; (2) calculating band ratios representing soil and vegetation stresses; and (3) modelling net primary productivity. Amazonian site-specific challenges are addressed in relation to each of the approaches, and pertinent research gaps are delineated. Conclusions focus on the strengths and weaknesses of each approach, and describing optimal strategies for integrating the productivity of vegetation into future Amazonian land-use change research.
    Print ISSN: 0309-1333
    Electronic ISSN: 1477-0296
    Topics: Geography
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...