ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: Early concepts to globally measure vertical profiles of vector horizontal wind from space planned on an orbit height of 525 km, a single pulsed coherent Doppler lidar system to cover the full troposphere, and a continuously rotating telescope/scanner that mandated a vertical line of sight wind profile from each laser shot. Under these conditions system studies found that laser pulse energies of approximately 20 J at 10 Hz pulse repetition rate with a rotating telescope diameter of approximately 1.5 m was required. Further requirements to use solid state laser technology and an eyesafe wavelength led to the relatively new 2-micron solid state laser. With demonstrated pulse energies near 20 mJ at 5 Hz, and no demonstration of a rotating telescope maintaining diffraction limited performance in space, the technology gap between requirements and demonstration was formidable. Fortunately the involved scientists and engineers set out to reduce the gap, and through a combination of clever ideas and technology advances over the last 15 years, they have succeeded. This paper will detail the gap reducing factors and will present the current status.
    Keywords: Meteorology and Climatology
    Type: SPIE 6681-6 , SPIE Lidar Remote Sensing for Environmental Monitoring VIII; Aug 26, 2007 - Aug 30, 2007; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-09-11
    Description: During 25 May–24 June 2017, NASA’s Doppler Aerosol WiNd (DAWN) lidar was flown on board a NASA DC-8 aircraft as part of the Convective Processes EXperiment (CPEX) airborne campaign based out of Ft. Lauderdale, FL. Central to DAWN’s deployment was the goal of obtaining high time and spatial resolution wind velocity measurements, particularly with respect to the convective life cycle. We describe the processes involved in deriving wind profiles from DAWN observations and evaluate the performance of DAWN in terms of data coverage, resolution and frequency. Comparisons with dropsonde wind measurements show an overall low bias of 0.92 for both u and v components for the data set as a whole (over 160 comparisons). From this CPEX experience, we find that the DAWN wind profiles are of high precision, ~30 m vertical resolution and with horizontal spacing as fine as 3–7 km, and rival dropsondes for horizontal wind coverage (aerosols and clouds permitting). Case studies illustrate the benefit of using the DAWN to investigate and characterize the dynamics of the tropical atmosphere over open ocean waters in conditions ranging from undisturbed to active convection.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-04-01
    Description: The first airborne wind measurements of a pulsed, 2-μm solid-state, high-energy, wind-profiling lidar system for airborne measurements are presented. The laser pulse energy is the highest to date in an eye-safe airborne wind lidar system. This energy, the 10-Hz laser pulse rate, the 15-cm receiver diameter, and dual-balanced coherent detection together have the potential to provide much-improved lidar sensitivity to low aerosol backscatter levels compared to earlier airborne-pulsed coherent lidar wind systems. Problems with a laser-burned telescope secondary mirror prevented a full demonstration of the lidar’s capability, but the hardware, algorithms, and software were nevertheless all validated. A lidar description, relevant theory, and preliminary results of flight measurements are presented.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-10-22
    Description: During October–November 2014 and May 2015, NASA sponsored and conducted a pair of airborne campaigns called Polar Winds to investigate atmospheric circulations, particularly in the boundary layer, over the Arctic using NASA’s Doppler Aerosol WiNd (DAWN) lidar. A description of the campaigns, the DAWN instrument, wind retrieval methods and data processing is provided. During the campaigns, the DAWN instrument faced backscatter sensitivity issues in the low aerosol conditions that were fairly frequent in the 2–6 km altitude range. However, when DAWN was able to make measurements, comparisons with dropsondes show good agreement and very low bias and supports the use of an airborne Doppler wind lidar such as DAWN that can provide profiles with high velocity precision, ~65 m vertical resolution and horizontal spacing as fine as 3–7 km. Case study analyses of a Greenland tip jet, barrier winds and an upper level jet are presented and show how, despite sensitivity issues, DAWN data can be confidently used in diagnostic studies of dynamic features in the Arctic. Comparisons with both an operational and research Weather Research and Forecasting (WRF) model for these events also show the potential for utilization in model validation. The sensitivity issues of the DAWN laser have since been corrected.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
  • 6
    Publication Date: 2004-12-03
    Description: Transmissive scanning elements for coherent laser radar systems are typically optical wedges, or prisms, which deflect the lidar beam at a specified angle and are then rotated about the instrument optical axis to produce a scan pattern. The wedge is placed in the lidar optical system subsequent to a beam-expanding telescope, implying that it has the largest diameter of any element in the system. The combination of the wedge diameter and asymmetric profile result in the element having very large mass and, consequently, relatively large power consumption required for scanning. These two parameters, mass and power consumption, are among the instrument requirements which need to be minimized when designing a lidar for a space-borne platform. Reducing the scanner contributions in these areas will have a significant effect on the overall instrument specifications, Replacing the optical wedge with a diffraction grating on the surface of a thin substrate is a straight forward approach with potential to reduce the mass of the scanning element significantly. For example, the optical wedge that will be used for the SPAce Readiness Coherent Lidar Experiment (SPARCLE) is approximately 25 cm in diameter and is made from silicon with a wedge angle designed for 30 degree deflection of a beam operating at approx. 2 micrometer wavelength. The mass of this element could be reduced by a factor of four by instead using a fused silica substrate, 1 cm thick, with a grating fabricated on one of the surfaces. For a grating to deflect a beam with a 2 micrometer wavelength by 30 degrees, a period of approximately 4 micrometers is required. This is small enough that fabrication of appropriate high efficiency blazed or multi-phase level diffractive optical gratings is prohibitively difficult. Moreover, bulk or stratified volume holographic approaches appear impractical due to materials limitations at 2 micrometers and the need to maintain adequate wavefront quality. In order to avoid the difficulties encountered in these approaches, we have developed a new type of high-efficiency grating which we call a Stratified Volume Diffractive Optical Element (SVDOE). The features of the gratings in this approach can be easily fabricated using standard photolithography and etching techniques and the materials used in the grating can be chosen specifically for a given application, In this paper we will briefly discuss the SVDOE technique and will present an example design of a lidar scanner using this approach. We will also discuss performance predictions for the example design.
    Keywords: Instrumentation and Photography
    Type: Tenth Biennial Coherent Laser Radar Technology and Applications Conference; 119-122; NASA/CP-1999-209758
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-12-03
    Description: The SPAce Readiness Coherent Lidar Experiment (SPARCLE) mission was proposed as a low cost technology demonstration mission, using a 2-micron, 100-mJ, 6-Hz, 25-cm, coherent lidar system based on demonstrated technology. SPARCLE was selected in late October 1997 to be NASA's New Millennium Program (NMP) second earth-observing (EO-2) mission. To maximize the success probability of SPARCLE, NASA/MSFC desired expert guidance in the areas of coherent laser radar (CLR) theory, CLR wind measurement, fielding of CLR systems, CLR alignment validation, and space lidar experience. This led to the formation of the NASA/MSFC Coherent Lidar Technology Advisory Team (CLTAT) in December 1997. A threefold purpose for the advisory team was identified as: 1) guidance to the SPARCLE mission, 2) advice regarding the roadmap of post-SPARCLE coherent Doppler wind lidar (CDWL) space missions and the desired matching technology development plan 3, and 3) general coherent lidar theory, simulation, hardware, and experiment information exchange. The current membership of the CLTAT is shown. Membership does not result in any NASA or other funding at this time. We envision the business of the CLTAT to be conducted mostly by email, teleconference, and occasional meetings. The three meetings of the CLTAT to date, in Jan. 1998, July 1998, and Jan. 1999, have all been collocated with previously scheduled meetings of the Working Group on Space-Based Lidar Winds. The meetings have been very productive. Topics discussed include the SPARCLE technology validation plan including pre-launch end-to-end testing, the space-based wind mission roadmap beyond SPARCLE and its implications on the resultant technology development, the current values and proposed future advancement in lidar system efficiency, and the difference between using single-mode fiber optical mixing vs. the traditional free space optical mixing. attitude information from lidar and non-lidar sensors, and pointing knowledge algorithms will meet this second requirement. The topic of this paper is the pre-launch demonstration of the first requirement, adequate sensitivity of the SPARCLE lidar.
    Keywords: Instrumentation and Photography
    Type: Tenth Biennial Coherent Laser Radar Technology and Applications Conference; 156-159; NASA/CP-1999-209758
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2004-12-03
    Description: The SPAce Readiness Coherent Lidar Experiment (SPARCLE) mission was proposed as a low cost technology demonstration mission, using a 2-micron, 100-mJ, 6-Hz, 25-cm, coherent lidar system based on demonstrated technology. SPARCLE was selected in late October 1997 to be NASA's New Millennium Program (NMP) second earth-observing (EO-2) mission. To maximize the success probability of SPARCLE, NASA/MSFC desired expert guidance in the areas of coherent laser radar (CLR) theory, CLR wind measurement, fielding of CLR systems, CLR alignment validation, and space lidar experience. This led to the formation of the NASA/MSFC Coherent Lidar Technology Advisory Team (CLTAT) in December 1997. A threefold purpose for the advisory team was identified as: 1) guidance to the SPARCLE mission, 2) advice regarding the roadmap of post-SPARCLE coherent Doppler wind lidar (CDWL) space missions and the desired matching technology development plan 3, and 3) general coherent lidar theory, simulation, hardware, and experiment information exchange. The current membership of the CLTAT is shown. Membership does not result in any NASA or other funding at this time. We envision the business of the CLTAT to be conducted mostly by email, teleconference, and occasional meetings. The three meetings of the CLTAT to date, in Jan. 1998, July 1998, and Jan. 1999, have all been collocated with previously scheduled meetings of the Working Group on Space-Based Lidar Winds. The meetings have been very productive. Topics discussed include the SPARCLE technology validation plan including pre-launch end-to-end testing, the space-based wind mission roadmap beyond SPARCLE and its implications on the resultant technology development, the current values and proposed future advancement in lidar system efficiency, and the difference between using single-mode fiber optical mixing vs. the traditional free space optical mixing.
    Keywords: Instrumentation and Photography
    Type: Tenth Biennial Coherent Laser Radar Technology and Applications Conference; 153-155; NASA/CP-1999-209758
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-12-03
    Description: An orbiting coherent Doppler lidar for measuring winds is required to provide two basic pieces of data to the user community. The first is the line of sight wind velocity and the second is knowledge of the position at which the measurement was made. In order to provide this information in regions of interest the instrument is also required to have a certain backscatter sensitivity level. This paper outlines some of the considerations necessary in designing a coherent Doppler lidar for this purpose.
    Keywords: Instrumentation and Photography
    Type: Tenth Biennial Coherent Laser Radar Technology and Applications Conference; 302-305; NASA/CP-1999-209758
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-23
    Description: The theory of special relativity is used to analyze some of the physical phenomena associated with space-based coherent Doppler lidars aimed at Earth and the atmosphere. Two important cases of diffuse scattering and retroreflection by lidar targets are treated. For the case of diffuse scattering, we show that for a coaligned transmitter and receiver on the moving satellite, there is no angle between transmitted and returned radiation. However, the ray that enters the receiver does not correspond to a retroreflected ray by the target. For the retroreflection case there is misalignment between the transmitted ray and the received ray. In addition, the Doppler shift in the frequency and the amount of tip for the receiver aperture when needed are calculated, The error in estimating wind because of the Doppler shift in the frequency due to special relativity effects is examined. The results are then applied to a proposed space-based pulsed coherent Doppler lidar at NASA's Marshall Space Flight Center for wind and aerosol backscatter measurements. The lidar uses an orbiting spacecraft with a pulsed laser source and measures the Doppler shift between the transmitted and the received frequencies to determine the atmospheric wind velocities. We show that the special relativity effects are small for the proposed system.
    Keywords: Instrumentation and Photography
    Type: Applied Optics (ISSN 0003-6935); Volume 38; No. 30; 6374-6381
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...