ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: We investigated the interaction of elevated CO2 and/or (Ozone) O3 on the occurrence and severity of aspen leaf rust (Melampsora medusae Thuem. f. sp. tremuloidae) on trembling aspen (Populus tremuloides Michx.). Furthermore, we examined the role of changes in leaf surface properties induced by elevated CO2 and/or O3 in this host–pathogen interaction. Three- to five-fold increases in levels of rust infection index were found in 2 consecutive years following growing-season-long exposures with either O3 alone or CO2 + O3 depending on aspen clone. Examination of leaf surface properties (wax appearance, wax amount, wax chemical composition, leaf surface and wettability) suggested significant effects by O3 and CO2 + O3. We conclude that elevated O3 is altering aspen leaf surfaces in such a way that it is likely predisposing the plants to increased infection by aspen leaf rust.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Many uncertainties remain regarding how climate change will alter the structure and function of forest ecosystems. At the Aspen FACE experiment in northern Wisconsin, we are attempting to understand how an aspen/birch/maple forest ecosystem responds to long-term exposure to elevated carbon dioxide (CO2) and ozone (O3), alone and in combination, from establishment onward. We examine how O3 affects the flow of carbon through the ecosystem from the leaf level through to the roots and into the soil micro-organisms in present and future atmospheric CO2 conditions. We provide evidence of adverse effects of O3, with or without co-occurring elevated CO2, that cascade through the entire ecosystem impacting complex trophic interactions and food webs on all three species in the study: trembling aspen (Populus tremuloides Michx.), paper birch (Betula papyrifera Marsh), and sugar maple (Acer saccharum Marsh). Interestingly, the negative effect of O3 on the growth of sugar maple did not become evident until 3 years into the study. The negative effect of O3 effect was most noticeable on paper birch trees growing under elevated CO2. Our results demonstrate the importance of long-term studies to detect subtle effects of atmospheric change and of the need for studies of interacting stresses whose responses could not be predicted by studies of single factors. In biologically complex forest ecosystems, effects at one scale can be very different from those at another scale. For scaling purposes, then, linking process with canopy level models is essential if O3 impacts are to be accurately predicted. Finally, we describe how outputs from our long-term multispecies Aspen FACE experiment are being used to develop simple, coupled models to estimate productivity gain/loss from changing O3.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Leaf gas exchange parameters and the content of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in the leaves of two 2-year-old aspen (Populus tremuloides Michx.) clones (no. 216, ozone tolerant and no. 259, ozone sensitive) were determined to estimate the relative stomatal and mesophyll limitations to photosynthesis and to determine how these limitations were altered by exposure to elevated CO2 and/or O3. The plants were exposed either to ambient air (control), elevated CO2 (560 p.p.m.) elevated O3 (55 p.p.b.) or a mixture of elevated CO2 and O3 in a free air CO2 enrichment (FACE) facility located near Rhinelander, Wisconsin, USA. Light-saturated photosynthesis and stomatal conductance were measured in all leaves of the current terminal and of two lateral branches (one from the upper and one from the lower canopy) to detect possible age-related variation in relative stomatal limitation (leaf age is described as a function of leaf plastochron index). Photosynthesis was increased by elevated CO2 and decreased by O3 at both control and elevated CO2. The relative stomatal limitation to photosynthesis (ls) was in both clones about 10% under control and elevated O3. Exposure to elevated CO2 + O3 in both clones and to elevated CO2 in clone 259, decreased ls even further – to about 5%. The corresponding changes in Rubisco content and the stability of Ci/Ca ratio suggest that the changes in photosynthesis in response to elevated CO2 and O3 were primarily triggered by altered mesophyll processes in the two aspen clones of contrasting O3 tolerance. The changes in stomatal conductance seem to be a secondary response, maintaining stable Ci under the given treatment, that indicates close coupling between stomatal and mesophyll processes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Leaf photosynthesis (Ps), nitrogen (N) and light environment were measured on Populus tremuloides trees in a developing canopy under free-air CO2 enrichment in Wisconsin, USA. After 2 years of growth, the trees averaged 1·5 and 1·6 m tall under ambient and elevated CO2, respectively, at the beginning of the study period in 1999. They grew to 2·6 and 2·9 m, respectively, by the end of the 1999 growing season. Daily integrated photon flux from cloud-free days (PPFDday,sat) around the lowermost branches was 16·8 ± 0·8 and 8·7 ± 0·2% of values at the top for the ambient and elevated CO2 canopies, respectively. Elevated CO2 significantly decreased leaf N on a mass, but not on an area, basis. N per unit leaf area was related linearly to PPFDday,sat throughout the canopies, and elevated CO2 did not affect that relationship. Leaf Ps light-response curves responded differently to elevated CO2, depending upon canopy position. Elevated CO2 increased Pssat only in the upper (unshaded) canopy, whereas characteristics that would favour photosynthesis in shade were unaffected by elevated CO2. Consequently, estimated daily integrated Ps on cloud-free days (Psday,sat) was stimulated by elevated CO2 only in the upper canopy. Psday,sat of the lowermost branches was actually lower with elevated CO2 because of the darker light environment. The lack of CO2 stimulation at the mid- and lower canopy was probably related to significant down-regulation of photosynthetic capacity; there was no down-regulation of Ps in the upper canopy. The relationship between Psday,sat and leaf N indicated that N was not optimally allocated within the canopy in a manner that would maximize whole-canopy Ps or photosynthetic N use efficiency. Elevated CO2 had no effect on the optimization of canopy N allocation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-2932
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Elevated O3 concentrations and N deposition levels co -occur in much of eastern United States. However, very little is known about their combined effects on tree growth. The effects of three O3 treatments: charcoal-filtered air, non-filtered air and O3, added at the rate of 80 ppb for 6 hr d−1 3 d per week), four N deposition levels (0, 10, 20 and 40 kg ha−1 yr−1), and their interactions on growth of two Populus tremuloides clones in open-top chambers at two sites 600 km apart in Michigan were examined. Our results revealed a highly significant fertilization effect of the N treatments, even at the 10 kg ha−1 yr−1 rate. Ozone alone induced foliar injury, but not significant growth reductions. There was an indication that O3 decreased growth at the O N level, but this decrease was reversed in all N treatments by the N fertilization effect. Further study is needed to more fully understand the combined effects of N deposition and O3.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 62 (1992), S. 187-187 
    ISSN: 1573-2932
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
  • 8
    Publication Date: 1989-10-01
    Description: Vitrification rates obtained from our inverted embryo system were significantly decreased by lowering the cytokinin concentrations in Brown and Lawrence medium containing 10 mM L-glutamine from 10 to 1 mg/L, or by replacing 10 mM L-glutamine with equimolar concentrations of Ca(NO3)2 or by adding 1 g/L Gelrite to the normal 10 g/L Difco–Bacto agar in the culture media. In all treatments, decreased vitrification was accompanied with decreased adventitious bud production. With reduced N6-benzylaminopurine, vitrification decreased from 77 to 29%, but bud production decreased from 61 to 17 buds per explant and mortality increased from 3 to 33%. Incorporation of Ca(NO3)2 into the media decreased vitrification from 87 to 21%, but the number of adventitious buds per embryo decreased from 75 to 42. Vitreous shoots were reverted to normal development with an 81% reversion frequency and a 6% mortality rate by culturing these shoots on Gresshof and Doy medium with one-half total nitrogen. Elongation of previously vitreous shoots was best when these shoots were cultured on Gresshof and Doy medium + 0.5 mg/L N6-benzylaminopurine for 2 weeks, followed by subculture on Gresshof of and Doy medium + 10 g/L charcoal.
    Print ISSN: 0045-5067
    Electronic ISSN: 1208-6037
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1991-07-01
    Description: Relative ozone sensitivity was evaluated among populations of Populustremuloides Michx. from 15 locations, mostly in national parks, that spanned the United States. Seven to 15 clones were selected from each population, greenhouse grown, fumigated with 150 ppb ozone for 6 h, and evaluated for visible injury. Differences among populations were statistically significant, with the most tolerant populations being obtained from the West Coast, the northeast, and the industrialized portions of the Great Lakes. Populations sampled from areas that failed to achieve the National Ambient Air Quality Standard for ozone had significantly less injury than populations from areas that achieved this standard. There was a significant negative correlation between the amount of injury and maximum daily ozone averages at localities where the populations were collected. There were also significant correlations between the amount of injury and two climatic variables, annual precipitation and minimum temperature. Differences among clones within populations were highly significant, and clonal variance was negatively correlated with maximum daily ozone average for the area where the populations were collected. These findings support our hypothesis that ambient levels of ozone may be eliminating ozone-sensitive clones from natural populations of this species, but indicate that climatic variables play a role as well.
    Print ISSN: 0045-5067
    Electronic ISSN: 1208-6037
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1998-11-01
    Description: A wide variety of hybrid poplar clones are being introduced for intensive culture biomass production, but the potential clonal or genotypic response to increasing tropospheric carbon dioxide (CO2), ozone (O3), and their interactions are unknown. To study these effects, we exposed five different hybrid Populus clones to increased concentrations of CO2, O3, and CO2 + O3 in open-top chambers for one growing season and determined growth responses. Exposure to elevated CO2 increased height growth, dry mass, and basal area; exposure to O3 decreased all three of these growth responses. Exposure impact differed among the different plant parts (leaf, stem, and roots) and among the clones. These differences were associated with different growth strategies or carbon allocation patterns inherent in the different clones. The fastest growing clones had the greatest response to O3 treatment. The addition of CO2 to the O3 exposure counteracted the negative impact of O3 in all plant components except leaf mass (e.g., CO2 + O3 plant mass equaled control plant mass) in all of the clones. But correspondingly, added O3 negated increased growth from CO2. Genetic variation in response to atmospheric pollutants must be considered even in closely related genotypes found in Populus culture.
    Print ISSN: 0045-5067
    Electronic ISSN: 1208-6037
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...