ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 55 (1997), S. 54-64 
    ISSN: 0006-3592
    Keywords: fluidized-bed adsorption ; dispersion ; particle diameter ; bed height ; frontal adsorption ; mass transport ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The influence of matrix properties and operating conditions on the performance in fluidized-bed adsorption has been studied using Streamline diethyl-aminoethyl (DEAE), an ion exchange matrix based on quartz-weighted agarose, and bovine serum albumin (BSA) as a model protein. Three different particle size fractions (120-160 μm, 120-300 μm, and 250-300 μm) were investigated. Dispersion in the liquid phase was reduced when particles with a wide size distribution were fluidized compared to narrow particle size distributions. When the mean particle diameter was reduced, the breakthrough capacities during frontal adsorption were enlarged due to a shorter diffusion path length within the matrix. At small particle diameters the effect of film mass transfer became more relevant to the adsorption performance in comparison to larger particles. Therefore matrices designed for fluidized-bed adsorption should have small particle diameter and increased mean particle density to ensure small diffusion path length in the particle and a high interstitial velocity to improve film mass transfer. Studies on the influence of sedimented matrix height on axial mixing showed an increased Bodenstein number with increasing bed length. Higher breakthrough capacities were also found for longer adsorbent beds due to reduced dispersion and improved fluid and particle side mass transfer. With increasing bed height the influence of flow rate on breakthrough capacity was reduced. For a settled bed height of 50 cm breakthrough capacities of 80% of the equilibrium capacity for flow rates varying from 3 to 9 cm/min could be achieved. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 54-64, 1997.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...