ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 9 (1989), S. 1235-1267 
    ISSN: 0271-2091
    Keywords: Pseudospectral ; Non-periodic ; Incompressible flows ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The reduction-to-periodicity method using the pseudospectral fast Fourier transform (FFT) technique is applied to the solution of non-periodic problems, including the two-dimensional incompressible Navier-Stokes equations. The accuracy of the method is explored by calculating the derivatives of given functions, one- and two-dimensional convective-diffusive problems, and by comparing the relative errors due to the FFT method with a second-order finite difference (FD) method. Finally, the two-dimensional Navier-Stokes equations are solved by a fractional step procedure using both the FFT and the FD methods for the driven cavity flow and the backward-facing step problems. Comparisons of these solutions provide a realistic assessment of the FFT method.
    Additional Material: 26 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: The reduction-to-periodicity method using the pseudo-spectral Fast Fourier Transform (FFT) technique is applied to the solution of nonperiodic problems including the two-dimensional Navier-Stokes equations. The accuracy of the method is demonstrated by calculating derivatives of given functions, one- and two-dimensional convective-diffusive problems, and by comparing the relative errors due to the FFT method with seocnd order Finite Difference Methods (FDM). Finally, the two-dimensional Navier-Stokes equations are solved by a fractional step procedure using both the FFT and the FDM methods for the driven cavity flow and the backward facing step problems. Comparisons of these solutions provide a realistic assessment of the FFT method indicating its range of applicability.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA PAPER 88-0415
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...