ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 574 (1989), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 760 (1995), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Calcified tissue international 60 (1997), S. 375 -379 
    ISSN: 1432-0827
    Keywords: Key words: Urolithiasis — Calcium oxalate — Crystal attachment — Membrane fluidity.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Abstract. The development of urolithiasis is a multifaceted process, starting with urine supersaturation and ending with the formation of mature renal calculi. The retention of microcrystals by kidney tubule epithelium cell membranes has been proposed as a critical event in the process. To date, attachment of kidney stone constituent crystals to urothelial cells has been demonstrated both in vitro and in vivo yet the mechanism of crystal attachment remains unknown. We hypothesize that for effective stone crystal attachment to the epithelium there must be cell membrane rearrangement that would allow for long-range bonding between the stone crystal and the cell membrane. This rearrangement may be influenced by the physical state of the membrane. The current study examines calcium oxalate monohydrate (COM) crystal attachment to inner medullary collecting duct (IMCD) cells following changes in cell membrane fluidity. Radioactively labeled COM crystals were used to quantitate crystal attachment. Membrane fluidity was altered by changing temperature, cell membrane cholesterol content, or extended length of cell culture. Crystal attachment to IMCD cells was directly correlated to changes in membrane fluidity. This finding was consistently observed regardless of the method used to alter membrane fluidity. The results are consistent with the theory that the ability to form a crystal attachment region on the cell surface may be related to the ease of rearrangement of membrane components at the cell surface. Variations in the urothelial cell environment during certain pathological conditions in the kidney could induce these physical perturbations and prime kidney epithelial cells at or near the papillary tip to bind COM crystals.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: Rat inner medullary collecting duct (IMCD) secretes substantial amounts of H+. However, carbonic anhydrase (CA), a concomitant of H+ secretion, has been generally reported absent in this segment. To reexamine this problem, we investigated CA and the morphological phenotypes of cells comprising the IMCD by CA histochemistry, using a modified Hansson technique with light and electron microscopy. Throughout the medulla, tubule cells exhibit histochemical CA activity. In the initial third of the inner medulla, a small proportion have features of intercalated cells and demonstrate some degree of CA activity. However, the majority population in the early portions of the IMCD appears to consist of principal cells. These also show CA staining of widely variable intensity, both among and within cells. A third cell type, previously called "IMCD cells", appears in the middle portion of the IMCD and is the only cell type present near the papilla tip. In contrast to previous reports, these "IMCD cells" have histochemical CA staining, also of highly variable intensity. These results demonstrate that stainable carbonic anhydrase to support acidification is present throughout the rat IMCD, both in intercalated cells and in some cells clearly not of this type. Therefore, the presence of CA is not specific for the intercalated cell type and suggests that other cell types may participate in acid secretion in IMCD.
    Keywords: Life Sciences (General)
    Type: The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society (ISSN 0022-1554); Volume 40; 10; 1535-45
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...