ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-09-01
    Print ISSN: 0587-4246
    Electronic ISSN: 1898-794X
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-05-01
    Print ISSN: 0587-4246
    Electronic ISSN: 1898-794X
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2020-02-12
    Description: The history of the Late Cenozoic stress regime was determined for an area between the gulfs of Fethiye and Antalya. Fault kinematic analysis and inversion of focal mechanisms of shallow earthquakes reveal significant evolution of the regional stress regime in SW Anatolia, i.e., the area of interaction between the Hellenic and Cyprus arcs, from the Mio-Pliocene to the present time. Fault kinematic analysis yields two different normal faulting stress regimes along the southwestern part of Fethiye-Burdur Fault zone, e.g., in and around Çameli Basin (Zone A1) and two different strike-slip to normal faulting stress regimes characterized by a roughly orthogonal set of extensional axes between Fethiye and Demre (Zone B) with an older NW–SE σ3 axis for Mio-Pliocene and a younger NE–SW σ3 axis for Plio-Quaternary time. Inversion of focal mechanisms of the earthquakes occurring in Zone A1 provides an extensional stress state with approximately N-S σ3 axis. Inversion of those occurring in Zone B, south of Zone A1, yields a dominantly strike-slip stress state with a NE-SW σ3 axis and a NW-SE σ1 axis respectively. The inversion slip vectors from fault planes yield a consistent normal faulting stress regime in Burdur Basin and its surroundings (i.e., along the northeastern part of Fethiye-Burdur Fault Zone, (Zone A2)) during Plio-Quaternary, continuing into recent time as indicated by earthquake focal mechanism inversions. Both states have a consistent NW–SE σ3 axis. Fault kinematic analysis indicates NW-SE extension acting in Zone C (subarea between Demre and Antalya), south of Zone A2, during Mio-Pliocene time. The inversion of focal mechanisms yields normal faulting also characterized by a consistent NW-SE σ3 axis. The nearly orthogonal extensional stress regimes (NW-SE and NE-SW) obtained by inversion of both measured and seismic faults seem to have been acting contemporaneously with each other at different intensities from the Mio-Pliocene onwards in SW Turkey. This may be attributed to the geodynamic effects related to the subduction of the African plate beneath Anatolia diffusing along the Hellenic and Cyprus arcs and in the west-southwestward extrusion of Anatolia. The cause of the early NW–SE extension is the slab-pull force due to the subduction process along the Cyprus arc, considered to be dominant until the Plio-Quaternary in the western part of the study area in zones A1 and B. The dominant status of the Cyprus arc continues today in the eastern part of study area in zones A2 and C. The later NE–SW to present day approximately N–S extension, dominant since the Plio-Quaternary, is related to the combined forces of the Anatolian extrusion and the subduction process along the Hellenic arc.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-12
    Description: This study defines the Plio-Quaternary to present day stress regime in the Burdur Basin, located at the northeastern end of the Fethiye–Burdur Fault Zone in SW Turkey. This fault length, which is considered the landward continuation of the Pliny-Strabo trench, is an important feature in SW Turkey. The inversion slip vectors measured on fault planes indicate a consistent normal faulting stress regime during Plio-Quaternary time, continuing into recent times as indicated by earthquake focal mechanism inversions. Both states have consistent NW–SE trending horizontal minimum stress axes (σ3). The orientation of fault sets is predominantly around the NE–SW direction in the major Fethiye–Burdur Fault Zone, making the extension NW–SE. The mean stress ratio is 0.74 indicating a triaxial stress state, which is clearly different from radial extension. The NW–SE extension is probably responsible for the formation of the Burdur Basin during Plio-Quaternary time. This extension, which is probably caused by slab-pull force due to the subduction process along the Cyprus arc, produces a dominant normal motion along the FBFZ.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-12
    Description: A history of deformation has been determined for the Cameli Basin located in the western part of the major Fethiye–Burdur Fault Zone, interpreted as the on-land continuation of Pliny–Strabo fault system (e.g., eastern boundary of the Hellenic Arc). Inversion of fault slip vectors affecting Mio-Pliocene to Quaternary formations in the Cameli Basin, in the southwestern segment of the transtensional Fethiye–Burdur Fault Zone, yields two different normal faulting stress regimes characterized by a roughly orthogonal set of extensional axes; a NW–SE (N129 ± 19 °E) σ3 axis and a NE–SW (N50 ± 16 °E) σ3 axis. The orientation of fault sets is predominantly around the NE–SW direction in the major Fethiye–Burdur Fault Zone, making the extension NW–SE. The mean R values are 0.74 and 0.69 for both extensions indicating a triaxial stress state, which is clearly different from radial extension and from transitional to strike-slip stress state. The NW–SE extension is probably responsible for the formation of the Cameli Basin during Mio-Pliocene time. In contrast, the inversion of focal mechanism solutions of shallow earthquakes occurring within the Cameli basin identifies a present-day, predominantly extensional stress regime, characterized by an approximately N–S (N184 °E) σ3 axis, which has an R value of 0.637 indicating a triaxial stress state. The nearly orthogonal extensional stress regimes seem to have been acting contemporaneously with each other at different intensities from the Mio-Pliocene onwards in SW Turkey. This may be attributed to the geodynamic effects related to the subduction of the African plate beneath Anatolia, diffusing along Hellenic and Cyprus arcs and in the west-southwestward extrusion of Anatolia. Our hypothesis is that the cause of the early NW–SE extension is the slab-pull force due to the subduction process along the Cyprus arc, considered to be dominant up to Plio-Quaternary. The later NE–SW to present-day ∼ N–S extension, dominant since the Plio-Quaternary, is related to the combined forces of the Anatolian extrusion and the subduction process along the Hellenic arc.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...