ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-03-01
    Description: We examined the petrological characteristics of the Graphite group and Androyan group in Southern Madagascar, south of the prominent Ranotsara shear zone, and we performed U-Pb SHRIMP dating on zircon and U-Th-total Pb dating on monazite. Widespread high-temperature metamorphism is evidenced by Spl-Qtz assemblages occurring over ca. 75,000 km2 in the whole Androyan group. The occurrence of symplectites consisting of Crd + Kfs + Qtz + Opx or Crd + Kfs + Q333tz + Bt, which are interpreted as pseudomorphs after osumilite, is restricted to a smaller area of about 250 km2. Furthermore, in some pelites Spr + Qtz + Sil or Opx + Sil + Qtz formed the peak-metamorphic assemblage, which broke down to Crd {+/-} Spl. Orthopyroxene in metapelites is aluminous with Al2O3 = 9-10 wt%. Peak-metamorphic conditions of T = 950-1000 {degrees}C and P = 8-11 kbar are followed by decompression at high temperatures, as shown by the formation of Crd + Opx2 (Opx with 6-8 wt% Al2O3) symplectites from Grt-Qtz-Opx1 (8-9 wt% Al2O3). The pressure decrease is furthermore constrained by Spr-Crd symplectites in SiO2-undersaturated metapelites, and extensive formation of late-stage cordierite in the whole Androyan group. During subsequent cooling, cordierite broke down to form And + Qtz + Carbonate/Chl. Throughout the Androyan group, ages of 560-530 Ma have been obtained from monazite (M2 metamorphism). Samples which do not contain ultrahigh-temperature assemblages provide evidence for an earlier metamorphic event at 650-600 Ma (M1) in monazite cores. Zircon generally shows both metamorphic ages. Therefore, the deduced clockwise P-T evolution of the UHT metamorphism is interpreted to correspond to the M2 stage, which affected the whole Androyan group. P-T conditions of the older M1 metamorphism are generally unrecognisable. High temperature metamorphic conditions during M2 are likely caused by intense charnockite emplacement. The near-isothermal decompression points to subsequent rapid exhumation of the formerly overthickened crust during the M2 metamorphism at 560-530 Ma. We interpret this metamorphic stage to reflect the assembly of the Gondwana supercontinent, most likely related to the collision of the Tanzania Craton with the Azania microcontinent subsequent to closure of the Mozambique Ocean.
    Print ISSN: 0935-1221
    Electronic ISSN: 1617-4011
    Topics: Geosciences
    Published by Schweizerbart
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Lithos 227 (2015): 1-20, doi:10.1016/j.lithos.2015.03.015.
    Description: Serpentine seamounts located on the outer half of the pervasively fractured Mariana forearc provide an excellent window into the forearc devolatilization processes, which can strongly influence the cycling of volatiles and trace elements in subduction zones. Serpentinized ultramafic clasts recovered from an active mud volcano in the Mariana forearc reveal microstructures, mineral assemblages and compositions that are indicative of a complex polyphase alteration history. Petrologic phase relations and oxygen isotopes suggest that ultramafic clasts were serpentinized at temperatures below 200 °C. Several successive serpe ntinization events represented by different vein generations with distinct trace element contents can be recognized. Measured Rb/Cs ratios are fairly uniform ranging between 1 and 10, which is consistent with Cs mobilization from sediments at lower temperatures and lends further credence to the low-temperature conditions proposed in models of the thermal structure in forearc settings. Late veins show lower fluid mobile element (FME) concentrations than early veins, suggesting a deacreasing influence of fluid discharge from sediments on the composition of the serpentinizing fluids. The continuous microfabric and mineral chemical evolution observed in the ultramafic clasts may have implications as to the origin and nature of the serpentinizing fluids. We hypothesize that opal and smectite dehydration produce quartz-saturated fluids with high FME contents and Rb/Cs between 1 and 4 that cause the early pervasive serpentinization. The partially serpentinized material may then be eroded from the basal plane of the suprasubduction mantle wedge. Serpentinization continued but the interacting fluids did not carry the slab-flux signature, either because FME were no longer released from the slab, or due to an en route loss of FMEs. Late chrysotile veins that document the increased access of fluids in a now fluid-dominated regime are characterized by reduced trace element contents with a slightly increased Rb/Cs ratio near 10. This lack of geochemical slab signatures consistently displayed in all late serpentinization stages may indicate that the slab-derived fluids have been completely reset (i.e. the FME excesses were removed) by continued water-rock reaction within the subduction channel. The final stage of diapiric rise of matrix and clasts in the conduits is characterized by brucite-dominated alteration of the clasts from the clast rim inward (independent of the intra-clast fabric relations), which corresponds to re-equilibration with alkaline, low-silica activity fluids in the rising mud.
    Description: This study was funded through a grant of the DFG to WB (BA 1605/5-1).
    Keywords: Serpentinization ; Polyphase alteration ; Mud volcano ; Fluid mobile elements recycling ; Hydrated mantle wedge ; Forearc peridotites ; Subduction zone
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 311 (2011): 242–252, doi:10.1016/j.epsl.2011.09.021.
    Description: Carbonate veins hosted in ultramafic basement drilled at two sites in the Mid Atlantic Ridge 15°N area record two different stages of fluid-basement interaction. A first generation of carbonate veins consists of calcite and dolomite that formed syn- to postkinematically in tremolite–chlorite schists and serpentine schists that represent gently dipping large-offset faults. These veins formed at temperatures between 90 and 170 °C (oxygen isotope thermometry) and from fluids that show intense exchange of Sr and Li with the basement (87Sr/86Sr = 0.70387 to 0.70641, δ7LiL-SVEC = + 3.3 to + 8.6‰). Carbon isotopic compositions range to high δ13CPDB values (+ 8.7‰), indicating that methanogenesis took place at depth. The Sr–Li–C isotopic composition suggests temperatures of fluid-rock interaction that are much higher (T 〉 350–400 °C) than the temperatures of vein mineral precipitation inferred from oxygen isotopes. A possible explanation for this discrepancy is that fluids cooled conductively during upflow within the presumed detachment fault. Aragonite veins were formed during the last 130 kyrs at low-temperatures within the uplifted serpentinized peridotites. Chemical and isotopic data suggest that the aragonites precipitated from cold seawater, which underwent overall little exchange with the basement. Oxygen isotope compositions indicate an increase in formation temperature of the veins by 8–12 °C within the uppermost ~ 80 m of the subseafloor. This increase corresponds to a high regional geothermal gradient of 100–150 °C/km, characteristic of young lithosphere undergoing rapid uplift.
    Description: WB, MR, and NJ thank the Deutsche Forschungsgemeinschaft (grant no. BA1605/2) for funding. NJ acknowledges support from the DFG-Research Center/Excellence Cluster, The Ocean in the Earth System
    Keywords: Hydrothermal processes ; Seawater circulation ; Carbonate veining ; Ocean-crust exchange ; Li isotopes ; Age dating
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Marine Geology 355 (2014): 98-114, doi:10.1016/j.margeo.2014.05.011.
    Description: This study presents a systematic analysis and interpretation of autonomous underwater vehicle-based microbathymetry combined with remotely operated vehicle (ROV) video recordings, rock analyses and temperature measurements within the PACManus hydrothermal area located on Pual Ridge in the Bismarck Sea of eastern Manus Basin. The data obtained during research cruise Magellan-06 and So-216 provides a framework for understanding the relationship between the volcanism, tectonism and hydrothermal activity. PACManus is a submarine felsic vocanically-hosted hydrothermal area that hosts multiple vent fields located within several hundred meters of one another but with different fluid chemistries, vent temperatures and morphologies. The total area of hydrothermal activity is estimated to be 20,279 m2. The microbathymetry maps combined with the ROV video observations allow for precise high-resolution mapping estimates of the areal extents of hydrothermal activity. We find the distribution of hydrothermal fields in the PACManus area is primarily controlled by volcanic features that include lava domes, thick and massive blocky lava flows, breccias and feeder dykes. Spatial variation in the permeability of local volcanic facies appears to control the distribution of venting within a field. We define a three-stage chronological sequence for the volcanic evolution of the PACManus based on lava flow morphology, sediment cover and lava SiO2 concentration. In Stage-1, sparsely to moderately porphyritic dacite lavas (68 - 69.8 wt. % SiO2) erupted to form domes or cryptodomes. In Stage-2, aphyric lava with slightly lower SiO2 concentrations (67.2 – 67.9 wt. % SiO2) formed jumbled and pillowed lava flows. In the most recent phase Stage-3, massive blocky lavas with 69 to 72.5 wt. % SiO2 were erupted through multiple vents constructing a volcanic ridge identified as the PACManus neovolcanic zone. The transition between these stages may be gradual and related to progressive heating of a silicic magma following a recharge event of hot, mantle-derived melts.
    Description: The RV Melville work was funded by a combination of the US National Science Foundation grant OCE-0327448 and a collaborative research funding grant from Nautilus Minerals for the ABE surveys. The RV Sonne research cruise was funded through the BMBF (Grant G03216a). Additional funding, including salary support for JT, was provided by the German DFG Research Centre/Excellence Cluster “The Ocean in the Earth System”. WB acknowledges support from DFG research grant BA1605/4-1.
    Keywords: PACManus ; Submarine volcanism ; Manus Basin ; Hydrothermal vent ; ROV ; Black smoker
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Format: video/mp4
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...