ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2013-06-12
    Description: [1]  We review the two main approaches to estimating sea level rise over the coming century: physically plausible models of reduced complexity that exploit statistical relationships between sea level and climate forcing, and more complex physics-based models of the separate elements of the sea level budget. Previously estimates of future sea level rise from semi-empirical models were considerably larger than from process based models. However we show that the most recent estimates of sea level rise by 2100 using both methods have converged, but largely through increased contributions and uncertainties in process based model estimates of ice sheets mass loss. Hence we focus in this paper on ice sheet flow as this has the largest potential to contribute to sea level rise. Progress has been made in ice dynamics, ice stream flow, grounding line migration and integration of ice sheet models with high resolution climate models. Calving physics remains an important and difficult modeling issue. Mountain glaciers, numbering hundreds of thousands, must be modeled by extensive statistical extrapolation from a much smaller calibration dataset. Rugged topography creates problems in process-based mass balance simulations forced by regional climate models with resolutions 10-100 times larger than the glaciers. Semi-empirical models balance increasing numbers of parameters with the choice of noise model for the observations to avoid overfitting the highly autocorrelated sea level data. All models face difficulty in separating out non-climate driven sea level rise (e.g., groundwater extraction) and long term disequilibria in the present day cryosphere-sea level system.
    Print ISSN: 8755-1209
    Topics: Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...