ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2019-04-17
    Description: Despite the idea that topography could control landslide size scaling law, the contribution of landscape geometry to landslide size distribution remains elusive. We define a simple mechanical model accounting for the complexity and variability of natural hillslopes to infer the landslide depth probability density function (PDF) in a given landscape and upscale it to landslide area PDF. This model is based on both a Mohr-Coulomb stability analysis, accounting for cohesion and friction, and a criterion of intersection between rupture planes and the topographic surface. It can reproduce the distribution of observed landslide areas triggered by several past events. We found the ranges of effective cohesion (10–35 kPa) and friction (20–45°) consistent with previous estimates of large-scale rock strength. Using synthetic topographies, we found that the finite geometry of hillslopes (length, steepness, and concavity) exerts a first-order control on the PDF of landslide areas, especially for large landslides. ©2019. American Geophysical Union. All Rights Reserved.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-12-14
    Description: Tectonics and climate-driven surface processes govern the evolution of Earth’s surface topography. Topographic change in turn influences lithospheric deformation, but the elementary scale at which this feedback can be effective is unclear. Here we show that it operates in a single weather-driven erosion event. In 2009, typhoon Morakot delivered ~ 3 m of precipitation in southern Taiwan, causing exceptional landsliding and erosion. This event was followed by a step increase in the shallow (〈 15 km depth) earthquake frequency lasting at least 2.5 years. Also, the scaling of earthquake magnitude and frequency underwent a sudden increase in the area where mass wasting was most intense. These observations suggest that the progressive removal of landslide debris by rivers from southern Taiwan has acted to increase the crustal stress rate to the extent that earthquake activity was demonstrably affected. Our study offers the first evidence of the impact of a single weather-driven erosion event on tectonics.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...