ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: Leaks on the Space Shuttle while on the Launch Pad have generated interest in hydrogen leak monitoring technology. An effective leak monitoring system requires reliable hydrogen sensors, hardware, and software to monitor the sensors. The system should process the sensor outputs and provide real-time leak monitoring information to the operator. This paper discusses the progress in developing such a complete leak monitoring system. Advanced microfabricated hydrogen sensors are being fabricated at Case Western Reserve University (CWRU) and tested at NASA Lewis Research Center (LeRC) and Gencorp Aerojet (Aerojet). Changes in the hydrogen concentrations are detected using a PdAg on silicon Schottky diode structure. Sensor temperature control is achieved with a temperature sensor and heater fabricated onto the sensor chip. Results of the characterization of these sensors are presented. These sensors can detect low concentrations of hydrogen in inert environments with high sensitivity and quick response time. Aerojet is developing the hardware and software for a multipoint leak monitoring system designed to provide leak source and magnitude information in real time. The monitoring system processes data from the hydrogen sensors and presents the operator with a visual indication of the leak location and magnitude. Work has commenced on integrating the NASA LeRC-CWRU hydrogen sensors with the Aerojet designed monitoring system. Although the leak monitoring system was designed for hydrogen propulsion systems, the possible applications of this monitoring system are wide ranged. Possible commercialization of the system will also be discussed.
    Keywords: COMMUNICATIONS AND RADAR
    Type: NASA-TM-106703 , E-9065 , NAS 1.15:106703 , NASA/SPIE Symposium; Jul 24, 1994 - Jul 29, 1994; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Leaks on the space shuttle while on the launch pad have generated interest in hydrogen leak monitoring technology. Microfabricated hydrogen sensors are being fabricated at Case Western Reserve University (CWRU) and tested at NASA Lewis Research Center (LeRC). These sensors have been integrated into hardware and software designed by Aerojet. This complete system allows for multipoint leak monitoring designed to provide leak source and magnitude information in real time. The monitoring system processes data from the hydrogen sensors and presents the operator with a visual indication of the leak location and magnitude. Although the leak monitoring system was designed for hydrogen propulsion systems, the possible applications of this monitoring system are wide ranged. This system is in operation in an automotive application which requires high sensitivity to hydrogen.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: NASA-TM-107063 , NAS 1.15:107063 , E-9924 , AIAA PAPER 95-2645 , Joint Propulsion Conference and Exhibit; Jul 10, 1995 - Jul 12, 1995; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: An automated hydrogen leak detection system is being developed for earth-to-orbit rocket engine applications. The system consists of three elements, a sensor array, a signal processing unit, and a diagnostic processor. The sensor array consists of discrete solid state sensors which are located at specific potential leak sites and in potential leak zones. The signal processing unit provides excitations power for the sensors and provides analog to digital data conversion of the sensor signals. The diagnostic computer analyzes the sensor outputs to determine leak sources and magnitude. Leak data from the sensor network is interpreted using knowledge based software and displayed on-line through a graphical user interface including 3-D leak visualization. The system requirements have been developed assuming eventual application to the Space Shuttle Main Engine which requires approximately 72 measurement locations. A prototype system has been constructed to demonstrate the operational features of the system. This system includes both prototype electronics and data processing software algorithms. Experiments are in progress to evaluate system operation at conditions which simulate prelaunch and flight. The prototype system consists of a network using 16 sensors within a testbed which simulates engine components. Sensor response, orientation, and data analysis algorithms are being evaluated using calibrated leaks produced within the testbed. A prototype flight system is also under development consisting of 8 sensors and flight capable electronics with autonomous control and data recording.
    Keywords: SPACECRAFT PROPULSION AND POWER
    Type: AIAA PAPER 93-2590 , ; 10 p.|AIAA, SAE, ASME, and ASEE, Joint Propulsion Conference and Exhibit; Jun 28, 1993 - Jun 30, 1993; Monterey, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...