ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-1383
    Keywords: distributed real-time systems ; communication protocols ; fault-tolerant systems
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract Real-time embedded systems have evolved during the past several decades from small custom-designed digital hardware to large distributed processing systems. As these systems become more complex, their interoperability, evolvability and cost-effectiveness requirements motivate the use of commercial-off-the-shelf components. This raises the challenge of constructing dependable and predictable real-time services for application developers on top of the inexpensive hardware and software components which has minimal support for timeliness and dependability guarantees. We are addressing this challenge in the ARMADA project. ARMADA is set of communication and middleware services that provide support for fault-tolerance and end-to-end guarantees for embedded real-time distributed applications. Since real-time performance of such applications depends heavily on the communication subsystem, the first thrust of the project is to develop a predictable communication service and architecture to ensure QoS-sensitive message delivery. Fault-tolerance is of paramount importance to embedded safety-critical systems. In its second thrust, ARMADA aims to offload the complexity of developing fault-tolerant applications from the application programmer by focusing on a collection of modular, composable middleware for fault-tolerant group communication and replication under timing constraints. Finally, we develop tools for testing and validating the behavior of our services. We give an overview of the ARMADA project, describing the architecture and presenting its implementation status.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1995-01-01
    Print ISSN: 0010-4620
    Electronic ISSN: 1460-2067
    Topics: Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...