ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5036
    Keywords: allometric growth ; Beta vulgaris L. ; drought ; models ; nitrogen ; partitioning
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In the UK sugar beet is grown on contrasting soils that vary both in their nutritional status and water-holding capacities. Water shortage and low nitrogen reduce canopy growth and dry matter production, which is compensated in part by an increase in the fraction of assimilates partitioned to storage. Conversely, high nitrogen and ample water encourage growth of the canopy, increase assimilation of carbon dioxide but reduce the proportion of assimilates stored as sugar. This paper sets out to examine simple relationships between sugar yield, total dry matter and soil nitrogen in rain-fed and irrigated sugar beet crops (Beta vulgaris L.) from 46 field experiments spanning 12 years and a range of soil types, in order to improve prediction of sugar yields. Two partitioning functions were fitted to the data. The first represents a useful alternative formulation of the allometric growth function that overcomes some of the difficulties in the interpretation of the parameters. This model adequately described the seasonal progress of sugar yield (Y) in relation to total dry matter (W), but it was difficult to postulate biological mechanisms as to how the parameters should vary in relation to varying soil nitrogen or to drought. The second partitioning function, given by Y = W − (1/k) log(1 + kW), also described the data well, but had the more useful parameter, k, the decay rate of the fraction of assimilates partitioned to structural matter. This was shown to be greater in crops which had experienced significant drought and was inversely proportional to the amount of nitrogen taken up by the crops. Relationships between k and amounts of nitrogen fertilizer applied and/or amounts of residual nitrogen in the soil at sowing, however, were more variable. These could be improved by additionally taking account of soil type and rainfall following nitrogen fertilizer application in late spring. The models are a useful extension to yield forecasting models because they provide a simple means of estimating sugar yield from total dry matter in relation to factors that affect partitioning of assimilates such as drought and soil nitrogen availability.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2001-08-01
    Print ISSN: 0168-1923
    Electronic ISSN: 1873-2240
    Topics: Geography , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1993-11-01
    Print ISSN: 0034-4257
    Electronic ISSN: 1879-0704
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-09-27
    Description: By 2050, the world population is likely to be 9.1 billion, the CO 2 concentration 550 ppm, the ozone concentration 60 ppb and the climate warmer by ca 2°C. In these conditions, what contribution can increased crop yield make to feeding the world? CO 2 enrichment is likely to increase yields of most crops by approximately 13 per cent but leave yields of C4 crops unchanged. It will tend to reduce water consumption by all crops, but this effect will be approximately cancelled out by the effect of the increased temperature on evaporation rates. In many places increased temperature will provide opportunities to manipulate agronomy to improve crop performance. Ozone concentration increases will decrease yields by 5 per cent or more. Plant breeders will probably be able to increase yields considerably in the CO 2 -enriched environment of the future, and most weeds and airborne pests and diseases should remain controllable, so long as policy changes do not remove too many types of crop-protection chemicals. However, soil-borne pathogens are likely to be an increasing problem when warmer weather will increase their multiplication rates; control is likely to need a transgenic approach to breeding for resistance. There is a large gap between achievable yields and those delivered by farmers, even in the most efficient agricultural systems. A gap is inevitable, but there are large differences between farmers, even between those who have used the same resources. If this gap is closed and accompanied by improvements in potential yields then there is a good prospect that crop production will increase by approximately 50 per cent or more by 2050 without extra land. However, the demands for land to produce bio-energy have not been factored into these calculations.
    Print ISSN: 0962-8436
    Electronic ISSN: 1471-2970
    Topics: Biology
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...