ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-05-16
    Description: Ruminant animals and ruminal microorganisms have a symbiotic relationship that facilitates fiber digestion, but domestic ruminants in developed countries are often fed an abundance of grain and little fiber. When ruminants are fed fiber-deficient rations, physiological mechanisms of homeostasis are disrupted, ruminal pH declines, microbial ecology is altered, and the animal becomes more susceptible to metabolic disorders and, in some cases, infectious disease. Some disorders can be counteracted by feed additives (for example, antibiotics and buffers), but these additives can alter the composition of the ruminal ecosystem even further.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Russell, J B -- Rychlik, J L -- New York, N.Y. -- Science. 2001 May 11;292(5519):1119-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Agricultural Research Service, U.S. Department of Agriculture, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11352069" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Domestic/anatomy & histology/microbiology/parasitology/physiology ; Bacteria/metabolism/pathogenicity ; Digestive System/anatomy & histology/*microbiology/parasitology/physiopathology ; *Digestive System Physiological Phenomena ; Drug Resistance, Microbial ; *Ecology ; Eukaryota/metabolism ; Fermentation ; Homeostasis ; Host-Parasite Interactions ; Humans ; Hydrogen-Ion Concentration ; Ruminants/anatomy & histology/*microbiology/parasitology/*physiology ; Symbiosis/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-03-13
    Description: Ribonuclease H2 (RNase H2) protects genome integrity by its dual roles of resolving transcription-related R-loops and ribonucleotides incorporated in DNA during replication. To unlink these two functions, we generated a Saccharomyces cerevisiae RNase H2 mutant that can resolve R-loops but cannot cleave single ribonucleotides in DNA. This mutant definitively correlates the 2–5 bp deletions observed in rnh201 strains with single rNMPs in DNA. It also establishes a connection between R-loops and Sgs1-mediated replication reinitiation at stalled forks and identifies R-loops uniquely processed by RNase H2. In mouse, deletion of any of the genes coding for RNase H2 results in embryonic lethality, and in humans, RNase H2 hypomorphic mutations cause Aicardi–Goutières syndrome (AGS), a neuroinflammatory disorder. To determine the contribution of R-loops and rNMP in DNA to the defects observed in AGS, we characterized in yeast an AGS-related mutation, which is impaired in processing both substrates, but has sufficient R-loop degradation activity to complement the defects of rnh201 sgs1 strains. However, this AGS-related mutation accumulates 2–5 bp deletions at a very similar rate as the deletion strain.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...