ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-08-15
    Description: Recent effective use of TAL Effectors (TALEs) has provided an important approach to the design and synthesis of sequence-specific DNA-binding proteins. However, it is still a challenging task to design and manufacture effective TALE modulators because of the limited knowledge of TALE–DNA interactions. Here we synthesized more than 200 TALE modulators and identified two determining factors of transcription activity in vivo : chromatin accessibility and the distance from the transcription start site. The implementation of these modulators in a gain-of-function screen was successfully demonstrated for four cell lines in migration/invasion assays and thus has broad relevance in this field. Furthermore, a novel TALE–TALE modulator was developed to transcriptionally inhibit target genes. Together, these findings underscore the huge potential of these TALE modulators in the study of gene function, reprogramming of cellular behaviors, and even clinical investigation.
    Keywords: Targeted inhibition of gene function, Targeted gene modification
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-06-12
    Description: Cytosolic inflammasome complexes mediated by a pattern recognition receptor (PRR) defend against pathogen infection by activating caspase 1. Pyrin, a candidate PRR, can bind to the inflammasome adaptor ASC to form a caspase 1-activating complex. Mutations in the Pyrin-encoding gene, MEFV, cause a human autoinflammatory disease known as familial Mediterranean fever. Despite important roles in immunity and disease, the physiological function of Pyrin remains unknown. Here we show that Pyrin mediates caspase 1 inflammasome activation in response to Rho-glucosylation activity of cytotoxin TcdB, a major virulence factor of Clostridium difficile, which causes most cases of nosocomial diarrhoea. The glucosyltransferase-inactive TcdB mutant loses the inflammasome-stimulating activity. Other Rho-inactivating toxins, including FIC-domain adenylyltransferases (Vibrio parahaemolyticus VopS and Histophilus somni IbpA) and Clostridium botulinum ADP-ribosylating C3 toxin, can also biochemically activate the Pyrin inflammasome in their enzymatic activity-dependent manner. These toxins all target the Rho subfamily and modify a switch-I residue. We further demonstrate that Burkholderia cenocepacia inactivates RHOA by deamidating Asn 41, also in the switch-I region, and thereby triggers Pyrin inflammasome activation, both of which require the bacterial type VI secretion system (T6SS). Loss of the Pyrin inflammasome causes elevated intra-macrophage growth of B. cenocepacia and diminished lung inflammation in mice. Thus, Pyrin functions to sense pathogen modification and inactivation of Rho GTPases, representing a new paradigm in mammalian innate immunity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Hao -- Yang, Jieling -- Gao, Wenqing -- Li, Lin -- Li, Peng -- Zhang, Li -- Gong, Yi-Nan -- Peng, Xiaolan -- Xi, Jianzhong Jeff -- Chen, She -- Wang, Fengchao -- Shao, Feng -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Sep 11;513(7517):237-41. doi: 10.1038/nature13449. Epub 2014 Jun 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] National Institute of Biological Sciences, Beijing 102206, China [2]. ; 1] National Institute of Biological Sciences, Beijing 102206, China [2] National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China [3]. ; National Institute of Biological Sciences, Beijing 102206, China. ; Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China. ; 1] National Institute of Biological Sciences, Beijing 102206, China [2] National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China [3] National Institute of Biological Sciences, Beijing, Collaborative Innovation Center for Cancer Medicine, Beijing 102206, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24919149" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Proteins/genetics/metabolism ; Bacterial Toxins/genetics/metabolism ; Burkholderia cenocepacia/metabolism ; Caspase 1/metabolism ; Cell Line ; Clostridium difficile/metabolism ; Cytoskeletal Proteins/genetics/*metabolism ; Humans ; Immunity, Innate/genetics/*immunology ; Inflammasomes/*metabolism ; Mice ; Mice, Inbred Strains ; Mutation ; Protein Binding ; Receptors, Pattern Recognition/metabolism ; U937 Cells ; rho GTP-Binding Proteins/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...