ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1998-08-07
    Description: A previously unknown solid phase of H2O has been identified by its peculiar growth patterns, distinct pressure-temperature melting relations, and vibrational Raman spectra. Morphologies of ice crystals and their pressure-temperature melting relations were directly observed in a hydrothermal diamond-anvil cell for H2O bulk densities between 1203 and 1257 kilograms per cubic meter at temperatures between -10 degrees and 50 degreesC. Under these conditions, four different ice forms were observed to melt: two stable phases, ice V and ice VI, and two metastable phases, ice IV and the new ice phase. The Raman spectra and crystal morphology are consistent with a disordered anisotropic structure with some similarities to ice VI.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chou -- Blank -- Goncharov -- Mao -- Hemley -- New York, N.Y. -- Science. 1998 Aug 7;281(5378):809-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉I. Chou, 955 National Center, U.S. Geological Survey, Reston, VA 20192, USA. J. G. Blank, A. F. Goncharov, H. Mao, R. J. Hemley, Geophysical Laboratory and Center for High Pressure Research, Carnegie Institution of Washington, 5251 Broad.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9694649" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-09-28
    Description: The ChemCam instrument, which provides insight into martian soil chemistry at the submillimeter scale, identified two principal soil types along the Curiosity rover traverse: a fine-grained mafic type and a locally derived, coarse-grained felsic type. The mafic soil component is representative of widespread martian soils and is similar in composition to the martian dust. It possesses a ubiquitous hydrogen signature in ChemCam spectra, corresponding to the hydration of the amorphous phases found in the soil by the CheMin instrument. This hydration likely accounts for an important fraction of the global hydration of the surface seen by previous orbital measurements. ChemCam analyses did not reveal any significant exchange of water vapor between the regolith and the atmosphere. These observations provide constraints on the nature of the amorphous phases and their hydration.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meslin, P-Y -- Gasnault, O -- Forni, O -- Schroder, S -- Cousin, A -- Berger, G -- Clegg, S M -- Lasue, J -- Maurice, S -- Sautter, V -- Le Mouelic, S -- Wiens, R C -- Fabre, C -- Goetz, W -- Bish, D -- Mangold, N -- Ehlmann, B -- Lanza, N -- Harri, A-M -- Anderson, R -- Rampe, E -- McConnochie, T H -- Pinet, P -- Blaney, D -- Leveille, R -- Archer, D -- Barraclough, B -- Bender, S -- Blake, D -- Blank, J G -- Bridges, N -- Clark, B C -- DeFlores, L -- Delapp, D -- Dromart, G -- Dyar, M D -- Fisk, M -- Gondet, B -- Grotzinger, J -- Herkenhoff, K -- Johnson, J -- Lacour, J-L -- Langevin, Y -- Leshin, L -- Lewin, E -- Madsen, M B -- Melikechi, N -- Mezzacappa, A -- Mischna, M A -- Moores, J E -- Newsom, H -- Ollila, A -- Perez, R -- Renno, N -- Sirven, J-B -- Tokar, R -- de la Torre, M -- d'Uston, L -- Vaniman, D -- Yingst, A -- MSL Science Team -- New York, N.Y. -- Science. 2013 Sep 27;341(6153):1238670. doi: 10.1126/science.1238670.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Universite de Toulouse, UPS-OMP, IRAP, 31028 Toulouse, France. pmeslin@irap.omp.eu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24072924" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2022-06-09
    Description: Exploration of the Martian subsurface, to depths from a few metres to many kilometres, offers an unprecedented opportunity to answer one of the biggest questions contemplated by humankind: was or is there life beyond Earth? Simultaneously, Mars subsurface exploration lays the foundation for self-sufficient human settlements beyond our own planet and provides an emerging potential for synergistic collaborations with the rising commercial space sector and traditional mining companies. Our understanding of the Martian subsurface and the technologies for exploring it — with a dual focus on the search for signs of extinct and extant life, and resource characterization and acquisition — have matured enough for serious consideration as part of future robotic missions to Mars.
    Description: Published
    Description: 116–120
    Description: 6A. Geochimica per l'ambiente
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019
    Description: Abstract We use the discrete element method to create numerical analogs to subduction megathrusts with natural roughness and heterogeneous fault friction. Boundary conditions simulate tectonic loading, inducing fault slip. Intermittently, slip develops into complex rupture events that include foreshocks, mainshocks, and aftershocks. We probe the kinematics and stress evolution of the fault zone to gain insight into the physical processes that govern these phenomena. Prolonged, localized differential stress drops precede dynamic failure, a phenomenon we attribute to the gradual unlocking of contacts as the fault dilates prior to rupture. Slip stability in our system appears to be governed primarily by geometrical phenomena, which allow both slow and fast slip to take place at the same areas along the fault. Similarities in slip behavior between simulated faults and real subduction zones affirm that modeled physical processes are also at work in nature.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2006-08-01
    Print ISSN: 0020-6814
    Electronic ISSN: 1938-2839
    Topics: Geosciences
    Published by Taylor & Francis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
  • 8
    Publication Date: 2019-07-13
    Description: Determining the composition of apatites is important to understand the behavior of volatiles during planetary differentiation. Apatite is an ubiquitous magmatic mineral in the SNC meteorites. It is a significant reservoir of halogens in these meteorites and has been used to estimate the halogen budget of Mars. Apatites have been identified in sandstones and pebbles at Gale crater by ChemCam, a Laser-Induced Breakdown Spectroscometer (LIBS) instrument onboard the Curiosity rover. Their presence was inferred from correlations between calcium, fluorine (using the CaF molecular band centered near 603 nm, whose detection limit is much lower that atomic or ionic lines and, in some cases, phosphorus (whose detection limit is much larger). An initial quantification of fluorine, based on fluorite (CaF2)/basalt mixtures and obtained at the LANL laboratory, indicated that the excess of F/Ca (compared to the stoichiometry of pure fluorapatites) found on Mars in some cases could be explained by the presence of fluorite. Chlorine was not detected in these targets, at least above a detection limit of 0.6 wt% estimated from. Fluorapatite was later also detected by X-ray diffraction (with CheMin) at a level of approx.1wt% in the Windjana drill sample (Kimberley area), and several points analyzed by ChemCam in this area also revealed a correlation between Ca and F. The in situ detection of F-rich, Cl-poor apatites contrasts with the Cl-rich, F-poor compositions of apatites found in basaltic shergottites and in gabbroic clasts from the martian meteorite NWA 7034, which were also found to be more Cl-rich than apatites from basalts on Earth, the Moon, or Vesta. The in situ observations could call into question one of the few possible explanations brought forward to explain the SNC results, namely that Mars may be highly depleted in fluorine. The purpose of the present study is to refine the calibration of the F, Cl, OH and P signals measured by the ChemCam LIBS instrument, initiated for F, for Cl in soils, for P, and estimate their limit of detection. For this purpose, different types of apatites and mixtures of basalt powder and apatites were analyzed using ChemCam Engineering Qualification Model (EQM) at IRAP, Toulouse. The present abstract presents the initial results from the laboratory analyses. Differences between the response function of the EQM and the Flight Model of ChemCam are still to be refined to apply these new results to the Martian dataset.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-35312 , Lunar and Planetary Science Conference; Mar 21, 2016 - Mar 25, 2016; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-17
    Description: We report here on a survey of a lava tube cave by a rover that is instrumented for astrobiology missions. The NASA Ames testbed rover, CaveR, was deployed in Valentine Cave in Lava Beds National Monument (N. CA, USA) during August of 2018. The rover carried an instrument package consisting of Near Infrared and Visible Spectrometer System (NIRVSS) a point spectrometer operating in 1590-3400 nm range, sensitive to H2O and -OH bearing minerals, pyroxenes, and carbonates (Roush, et al 2018); the bore sighted Drill Operations Camera (DOC), a monochrome imager illuminated by LEDs at 410, 540, 640, 740, 905 and 940 nm; a Realsense depth sensor system for 3D model generation; and a high resolution DSLR stereo camera. The payload was mounted on a tiltable instrument platform attached to the left side of the rover. The rover was driven manually in the cave by field operators, following instructions from a remote science operations team, and simulating a mission concept with science-guided autonomy. A simulated mission took place for 3 days with a team of 3 scientists selecting targets and interpreting data from the payload. To begin the mission, the rover drove along one wall of the cave imaging continuously with the Realsense in 20 m cave segments, three total. At the start of each day, the images from a 20m segment and a panorama stitched from them were provided to the science team to examine. The science team used these data to prioritize specific points along the cave wall for the collection of NIRVSS, DOC, and DSLR data. The objective of the data collection was to identify and study putative biological and mineralogical features in the cave. The data were delivered in xGDS, a customized mapping, planning, and data base management software developed at NASA Ames (Lee, et al 2013). Once the targets for further observations were selected, a plan for collecting the observations (positions in the cave and pointing for each requested observation) was constructed using xGDS and delivered to a rover team to execute the science data collection plan. Acquired data were delivered back to the science team for analysis. Preliminary results from the experiment illustrate the utility of the system (rover plus payload) to study the cave geology and mineralogy and its potential for identifying biomineral features.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN69699 , AbSciCon 2019; Jun 24, 2019 - Jun 28, 2019; Bellevuw, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-13
    Description: The Curiosity rover has recently found evidence for small amounts of jarosite, a ferric sulfate, in the Pahrump Hills region at the base of Aeolis Mons (Mount Sharp), Gale crater. While jarosite has been described previously at other locations on Mars, including several sites at Meridiani Planum (explored by the Opportunity rover; and Mawrth Vallis (by remote MRO-CRISM observations; this is the first identification in Gale. Jarosite is interpreted to be a mineral indicator of acidic conditions (pH less than 4; on Earth, it is most commonly found in acid rock-drainage or acid sulfate soil environments. However, jarosite has also been described from a number of terrestrial environments where widespread acidic conditions are not prevalent. As a case study, we describe here an occurrence of sedimentary pyrite nodules that have been variably oxidized in situ to gypsum, schwertmannite, K-/Na-jarosite and iron oxides in a polar desert environment on Devon Island, Nunavut, Canada. Remarkably, these nodules occur in loosely consolidated carbonate sediments, which would have required a higher pH environment at their time of formation and deposition. Thus, acidic conditions may only exist at a small (sub-cm) scale or in a restricted temporal window in an otherwise well-buffered environment. On Devon Island, the jarosite occurs in the most oxidized nodules and is never associated directly with pyrite. Schwertmannite, a metastable iron oxyhydroxysulfate that can form at pH higher than that required for jarosite, occurs in association with partially oxidized pyrite. The paragenetic sequence observed here suggests initial formation of schwertmannite and late-stage precipitation of jarosite in restricted micro-environments, possibly forming via transformation of an amorphous schwertmannite-like phase. While the carbonate environment on Devon Island differs significantly from that of Gale crater, i.e., where we find predominantly basaltic sedimentary rocks, this terrestrial analog provides insight into the significance of jarosite with respect to habitability. For example, the variable abundance of jarosite on Mars and possibly in Gale crater points to potentially localized conditions favorable for jarosite formation. Interestingly, small amounts of sulfide minerals have also been detected by Curiosity at Yellowknife Bay; oxidation of sulfide minerals at Pahrump could explain the presence of small amounts of jarosite. The iron-rich rocks at Pahrump may also represent relatively altered basaltic sediments, or they could be sediments that were altered further by a fluid with a distinct, possibly more acidic, composition. In addition, the abundance of iron-rich amorphous material in Gale rocks allows for the possibility that pre-cursor, iron-bearing phases transform to jarosite post-depositionally. Thus, the occurrence of jarosite at Pahrump could reflect changing paleoenvironmental conditions, though continuing study of its context and textural relationships should provide a fuller understanding of the significance of this mineral to past fluid compositions and past habitability at Gale crater.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-33087 , Astrobiology Science Conference (AbSciCon2015); Jun 15, 2015 - Jun 19, 2015; Chicago, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...