ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    John Wiley and Sons, 550 pp.
    In:  New York, John Wiley and Sons, 550 pp., vol. 2, no. 3, pp. 2-203, (ISBN 0-521-59067-1 hc (0-521-59933-4 pb))
    Publication Date: 1973
    Keywords: Statistical investigations
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-05-20
    Description: Polymorphisms rs6232 and rs6234/rs6235 in PCSK1 have been associated with extreme obesity [e.g. body mass index (BMI) ≥ 40 kg/m 2 ], but their contribution to common obesity (BMI ≥ 30 kg/m 2 ) and BMI variation in a multi-ethnic context is unclear. To fill this gap, we collected phenotypic and genetic data in up to 331 175 individuals from diverse ethnic groups. This process involved a systematic review of the literature in PubMed, Web of Science, Embase and the NIH GWAS catalog complemented by data extraction from pre-existing GWAS or custom-arrays in consortia and single studies. We employed recently developed global meta-analytic random-effects methods to calculate summary odds ratios (OR) and 95% confidence intervals (CIs) or beta estimates and standard errors (SE) for the obesity status and BMI analyses, respectively. Significant associations were found with binary obesity status for rs6232 (OR = 1.15, 95% CI 1.06–1.24, P = 6.08 x 10 –6 ) and rs6234/rs6235 (OR = 1.07, 95% CI 1.04–1.10, P = 3.00 x 10 –7 ). Similarly, significant associations were found with continuous BMI for rs6232 ( β = 0.03, 95% CI 0.00–0.07; P = 0.047) and rs6234/rs6235 ( β = 0.02, 95% CI 0.00–0.03; P = 5.57 x 10 –4 ). Ethnicity, age and study ascertainment significantly modulated the association of PCSK1 polymorphisms with obesity. In summary, we demonstrate evidence that common gene variation in PCSK1 contributes to BMI variation and susceptibility to common obesity in the largest known meta-analysis published to date in genetic epidemiology.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-02-04
    Description: Nature Physics 11, 177 (2015). doi:10.1038/nphys3187 Authors: M. P. Allan, Kyungmin Lee, A. W. Rost, M. H. Fischer, F. Massee, K. Kihou, C-H. Lee, A. Iyo, H. Eisaki, T-M. Chuang, J. C. Davis & Eun-Ah Kim Cooper pairing in the iron-based high-Tc superconductors is often conjectured to involve bosonic fluctuations. Among the candidates are antiferromagnetic spin fluctuations and d-orbital fluctuations amplified by phonons. Any such electron–boson interaction should alter the electron’s ‘self-energy’, and then become detectable through consequent modifications in the energy dependence of the electron’s momentum and lifetime. Here we introduce a novel theoretical/experimental approach aimed at uniquely identifying the relevant fluctuations of iron-based superconductors by measuring effects of their self-energy. We use innovative quasiparticle interference (QPI) imaging techniques in LiFeAs to reveal strongly momentum-space anisotropic self-energy signatures that are focused along the Fe–Fe (interband scattering) direction, where the spin fluctuations of LiFeAs are concentrated. These effects coincide in energy with perturbations to the density of states N(ω) usually associated with the Cooper pairing interaction. We show that all the measured phenomena comprise the predicted QPI ‘fingerprint’ of a self-energy due to antiferromagnetic spin fluctuations, thereby distinguishing them as the predominant electron–boson interaction.
    Print ISSN: 1745-2473
    Electronic ISSN: 1745-2481
    Topics: Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-02-03
    Description: Nature Physics 12, 150 (2016). doi:10.1038/nphys3519 Authors: M. H. Hamidian, S. D. Edkins, Chung Koo Kim, J. C. Davis, A. P. Mackenzie, H. Eisaki, S. Uchida, M. J. Lawler, E.-A. Kim, S. Sachdev & K. Fujita Research on high-temperature superconducting cuprates is at present focused on identifying the relationship between the classic ‘pseudogap’ phenomenon and the more recently investigated density wave state. This state is generally characterized by a wavevector Q parallel to the planar Cu–O–Cu bonds along with a predominantly d-symmetry form factor (dFF-DW). To identify the microscopic mechanism giving rise to this state, one must identify the momentum-space states contributing to the dFF-DW spectral weight, determine their particle–hole phase relationship about the Fermi energy, establish whether they exhibit a characteristic energy gap, and understand the evolution of all these phenomena throughout the phase diagram. Here we use energy-resolved sublattice visualization of electronic structure and reveal that the characteristic energy of the dFF-DW modulations is actually the ‘pseudogap’ energy Δ1. Moreover, we demonstrate that the dFF-DW modulations at E  =   −Δ1 (filled states) occur with relative phase π compared to those at E  =  Δ1 (empty states). Finally, we show that the conventionally defined dFF-DW Q corresponds to scattering between the ‘hot frontier’ regions of momentum-space beyond which Bogoliubov quasiparticles cease to exist. These data indicate that the cuprate dFF-DW state involves particle–hole interactions focused at the pseudogap energy scale and between the four pairs of ‘hot frontier’ regions in momentum space where the pseudogap opens.
    Print ISSN: 1745-2473
    Electronic ISSN: 1745-2481
    Topics: Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-01-28
    Description: The oceans are absorbing increasing amounts of carbon dioxide (CO 2 ) as a result of rising anthropogenic atmospheric CO 2 emissions. This increase in oceanic CO 2 leads to the lowering of seawater pH, which is known as ocean acidification (OA). Simultaneously, rising global temperatures, also linked to higher atmospheric CO 2 concentrations, result in a more stratified surface ocean, reducing exchange between surface and deeper waters, leading to expansion of oxygen-limited zones (hypoxia). Numerous studies have investigated the impact of one or the other of these environmental changes (OA, hypoxia) on a wide variety of marine organisms, but few experimental studies have focused on the simultaneous effects of these two stressors. Foraminifera are unicellular eukaryotes (protists) that live in virtually every marine environment and form an important link in the benthic food web. Here we present results of a short-term (3.5 week) study in which both CO 2 (OA) and O 2 (hypoxia) were manipulated to evaluate the influence of these parameters on the survival of the benthic foraminifer Globobulimina turgida . Elevated CO 2 concentrations did not impact short-term survivorship of this species, and furthermore, G. turgida had higher survival percentages under hypoxic conditions (0.7 ml/l) than in well-aerated water, regardless of CO 2 concentration.
    Print ISSN: 0096-1191
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-06-13
    Description: Carbon monoxide (CO) is in principle an excellent resource from which to produce industrial hydrocarbon feedstocks as alternatives to crude oil; however, CO has proven remarkably resistant to selective homologation, and the few complexes that can effect this transformation cannot be recycled because liberation of the homologated product destroys the complexes or they are substitutionally inert. Here, we show that under mild conditions a simple triamidoamine uranium(III) complex can reductively homologate CO and be recycled for reuse. Following treatment with organosilyl halides, bis(organosiloxy)acetylenes, which readily convert to furanones, are produced, and this was confirmed by the use of isotopically 13C-labeled CO. The precursor to the triamido uranium(III) complex is formed concomitantly. These findings establish that, under appropriate conditions, uranium(III) can mediate a complete synthetic cycle for the homologation of CO to higher derivatives. This work may prove useful in spurring wider efforts in CO homologation, and the simplicity of this system suggests that catalytic CO functionalization may soon be within reach.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-03-01
    Description: Nature Physics 10, 184 (2014). doi:10.1038/nphys2897 Authors: J. C. Davis & P. J. Hirschfeld Iron pnictide superconductors often feature nematic, symmetry-breaking electronic states. These phenomena are now found to persist into the tetragonal phase of NaFeAs — a new piece of information that may help settle the fundamental origin of nematic electronic states.
    Print ISSN: 1745-2473
    Electronic ISSN: 1745-2481
    Topics: Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1999-07-03
    Description: Low-temperature scanning tunneling spectroscopy of the high transition temperature (high-Tc) cuprate Bi2Sr2CaCu2O8+delta reveals the existence of large numbers of identical regions with diameters of about 3 nanometers that have a relatively high density of low-energy quasi-particle states. Their spatial and spectroscopic characteristics are consistent with theories of strong quasi-particle scattering from atomic-scale impurities in a d-wave superconductor. These characteristics include breaking of local particle-hole symmetry, a diameter near twice the superconducting coherence length, and an inverse square dependence of their local density-of-states on distance from the scattering center. In addition to the validation of d-wave quasi-particle scattering theories, these observations identify a source for the anomalously high levels of low-energy quasi-particles in Bi2Sr2CaCu2O8+delta at low temperatures.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hudson -- Pan -- Gupta -- Ng -- Davis -- New York, N.Y. -- Science. 1999 Jul 2;285(5424):88-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics, University of California, Berkeley, CA, 94720-7300, USA. Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506-0055, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10390368" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1997-11-21
    Description: Direct measurements of the current-phase relation, I versus Deltaphi, for a weak link coupling two reservoirs of B-phase superfluid helium-3 (3He-B) were made over a wide range of temperatures. The weak link consists of a square array of 100-nanometer-diameter apertures. For temperatures T such that T/Tc 〉/= 0.6 (where Tc is the superfluid transition temperature), I approximately sin(Deltaphi). At lower temperatures, I(Deltaphi) approaches a straight line. Several remarkable phenomena heretofore inaccessible to superconducting Josephson junctions, including direct observation of quantum oscillations and continuous knowledge of Deltaphi, were also observed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Backhaus -- Pereverzev -- Loshak -- Davis -- Packard -- New York, N.Y. -- Science. 1997 Nov 21;278(5342):1435-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Physics Department, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9367950" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-06-04
    Description: Within a Kondo lattice, the strong hybridization between electrons localized in real space (r-space) and those delocalized in momentum-space (k-space) generates exotic electronic states called 'heavy fermions'. In URu(2)Si(2) these effects begin at temperatures around 55 K but they are suddenly altered by an unidentified electronic phase transition at T(o) = 17.5 K. Whether this is conventional ordering of the k-space states, or a change in the hybridization of the r-space states at each U atom, is unknown. Here we use spectroscopic imaging scanning tunnelling microscopy (SI-STM) to image the evolution of URu(2)Si(2) electronic structure simultaneously in r-space and k-space. Above T(o), the 'Fano lattice' electronic structure predicted for Kondo screening of a magnetic lattice is revealed. Below T(o), a partial energy gap without any associated density-wave signatures emerges from this Fano lattice. Heavy-quasiparticle interference imaging within this gap reveals its cause as the rapid splitting below T(o) of a light k-space band into two new heavy fermion bands. Thus, the URu(2)Si(2) 'hidden order' state emerges directly from the Fano lattice electronic structure and exhibits characteristics, not of a conventional density wave, but of sudden alterations in both the hybridization at each U atom and the associated heavy fermion states.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schmidt, A R -- Hamidian, M H -- Wahl, P -- Meier, F -- Balatsky, A V -- Garrett, J D -- Williams, T J -- Luke, G M -- Davis, J C -- England -- Nature. 2010 Jun 3;465(7298):570-6. doi: 10.1038/nature09073.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, New York 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20520706" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...