ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-10-22
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-29
    Description: We describe our efforts in studying and comparing the ocean color data derived from the Japanese Ocean Color and Temperature Scanner (OCTS) and the French Polarization and Directionality of the Earth's Reflectances (POLDER). OCTS and POLDER were both on board Japan's Sun-synchronous Advanced Earth Observing Satellite (ADEOS-1) from August 1996 to June 1997, collecting about 10 months of global ocean color data. This provides a unique opportunity for developing methods and strategies for the merging of ocean color data from multiple ocean color sensors. In this paper, we describe our approach in developing consistent data processing algorithms for both OCTS and POLDER and using a common in situ data set to vicariously calibrate the two sensors. Therefore, the OCTS and POLDER-measured radiances are effectively bridged through common in situ measurements. With this approach in processing data from two different sensors, the only differences in the derived products from OCTS and POLDER are the differences inherited from the instrument characteristics. Results show that there are no obvious bias differences between the OCTS and POLDER-derived ocean color products, whereas the differences due to noise, which stem from variations in sensor characteristics, are difficult to correct. It is possible, however, to reduce noise differences with some data averaging schemes. The ocean color data from OCTS and POLDER can therefore be compared and merged in the sense that there is no significant bias between two.
    Keywords: Oceanography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The Visible Infrared Imager Radiometer Suite (VIIRS) sensor was launched 28 October 2011 on the Suomi National Polarorbiting Partnership (SNPP) satellite. VIIRS has 22 spectral bands covering the spectrum between 0.412 m and 12.01 m, including 16 moderate resolution bands (M-bands) with a spatial resolution of 750 m at nadir, 5 imaging resolution bands (I-bands) with a spatial resolution of 375 m at nadir, and 1 day-night band (DNB) with a near-constant 750 m spatial resolution throughout the scan. These bands are located in a visible and near infrared (VisNIR) focal plane assembly (FPA), a short- and mid-wave infrared (SWMWIR) FPA and a long-wave infrared (LWIR) FPA. All bands, except the DNB, are co-registered for proper environmental data records (EDRs) retrievals. Observations from VIIRS instrument provide long-term measurements of biogeophysical variables for climate research and polar satellite data stream for the operational communitys use in weather forecasting and disaster relief and other applications. Well Earth-located (geolocated) instrument data is important to retrieving accurate biogeophysical variables. This paper describes prelaunch pointing and alignment measurements, and the two sets of on-orbit correction of geolocation errors, the first of which corrected error from 1,300 m to within 75 m (20 I-band pixel size), and the second of which fine tuned scan angle dependent errors, bringing VIIRS geolocation products to high maturity in one and a half years of the SNPP VIIRS on-orbit operations. Prelaunch calibration and the on-orbit characterization of sensor spatial impulse responses and band-to-band co-registration (BBR) are also described.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN10242 , GSFC-E-DAA-TN17655 , Journal of Geophysical Research: Atmospheres; 118; 20; 11,508–11,521
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...