ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2020-07-04
    Description: A hybrid Linear Quadratic Regulator (LQR) and Proportional-Integral (PI) control for a MicroGrid (MG) under unbalanced linear and nonlinear loads was presented and evaluated in this paper. The designed control strategy incorporates the microgrid behavior, low-cost LQR, and error reduction in the stationary state by the PI control, to reduce the overall energetic cost of the classical PI control applied to MGs. A Genetic Algorithm (GA) calculates the parameters of LQR with high-accuracy fitness function to obtain the optimal controller parameters as settling time and overshoot. The gain values of the classical PI controller were determined through the improved LQR values and geometrical root locus. When MG operates in the grid-tied mode under unbalanced conditions, the controller performance of the Current Source Inverter (CSI) of the MG is considerably affected. Consequently, the CSI operates in a negative-sequence mode to compensate for unbalanced current at the Point of Common Coupling (PCC) between the MG and the utility grid. The study cases involved the reduction of the negative-sequence percentage in the current at the PCC, mitigation of harmonics in the current signal injected by the MG, and close related power quality issues. All these cases have been analyzed by implementing an MG connected at the PCC of a low-voltage distribution network. A numerical model of the MG in Matlab/Simulink was implemented to verify the performance of the designed LQR-PI control to mitigate or overcome the power quality concerns. The extensive simulations have permitted verifying the robustness and effectiveness of the proposed strategy.
    Electronic ISSN: 2227-7390
    Topics: Mathematics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-08-28
    Description: Category suggestions or recommendations for customers or users have become an essential feature for commerce or leisure websites. This is a growing topic that follows users’ activity in social networks generating a huge quantity of information about their interests, contacts, among many others. These data are usually collected to analyze people’s behavior, trends, and integrate a complete user profile. In this sense, we analyze a dataset collected from Pinterest to predict the gender and age by processing input images using a Convolutional Neural Network. Our method is based on the meaning of the image rather than the visual content. Additionally, we propose a heuristic-based approach for text analysis to predict users’ age and gender from Twitter. Both of the classifiers are based on text and images and they are compared with various similar approaches in the state of the art. Suggested categories are based on association rules conformed by the activity of thousands of users in order to estimate trends. Computer simulations showed that our approach can recommend interesting categories for a user analyzing his current interest and comparing this interest with similar users’ profiles or trends and, therefore, achieve an improved user profile. The proposed method is capable of predicting the user’s age with high accuracy, and at the same time, it is able to predict gender and category information from the user. The certainty that one or more suggested categories be interesting to people is higher for those users with a large number of publications.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-05-04
    Description: Early detection of different levels of tremors helps to obtain a more accurate diagnosis of Parkinson’s disease and to increase the therapy options for a better quality of life for patients. This work proposes a non-invasive strategy to measure the severity of tremors with the aim of diagnosing one of the first three levels of Parkinson’s disease by the Unified Parkinson’s Disease Rating Scale (UPDRS). A tremor being an involuntary motion that mainly appears in the hands; the dataset is acquired using a leap motion controller that measures 3D coordinates of each finger and the palmar region. Texture features are computed using sum and difference of histograms (SDH) to characterize the dataset, varying the window size; however, only the most fundamental elements are used in the classification stage. A machine learning classifier provides the final classification results of the tremor level. The effectiveness of our approach is obtained by a set of performance metrics, which are also used to show a comparison between different proposed designs.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-03-12
    Description: Advances in the field of Brain-Computer Interfaces (BCIs) aim, among other applications, to improve the movement capacities of people suffering from the loss of motor skills. The main challenge in this area is to achieve real-time and accurate bio-signal processing for pattern recognition, especially in Motor Imagery (MI). The significant interaction between brain signals and controllable machines requires instantaneous brain data decoding. In this study, an embedded BCI system based on fist MI signals is developed. It uses an Emotiv EPOC+ Brainwear®, an Altera SoCKit® development board, and a hexapod robot for testing locomotion imagery commands. The system is tested to detect the imagined movements of closing and opening the left and right hand to control the robot locomotion. Electroencephalogram (EEG) signals associated with the motion tasks are sensed on the human sensorimotor cortex. Next, the SoCKit processes the data to identify the commands allowing the controlled robot locomotion. The classification of MI-EEG signals from the F3, F4, FC5, and FC6 sensors is performed using a hybrid architecture of Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks. This method takes advantage of the deep learning recognition model to develop a real-time embedded BCI system, where signal processing must be seamless and precise. The proposed method is evaluated using k-fold cross-validation on both created and public Scientific-Data datasets. Our dataset is comprised of 2400 trials obtained from four test subjects, lasting three seconds of closing and opening fist movement imagination. The recognition tasks reach 84.69% and 79.2% accuracy using our data and a state-of-the-art dataset, respectively. Numerical results support that the motor imagery EEG signals can be successfully applied in BCI systems to control mobile robots and related applications such as intelligent vehicles.
    Electronic ISSN: 2227-7390
    Topics: Mathematics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...