ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2005-11-10
    Description: The use of a directional array of microphones for the measurement of trailing edge (TE) noise is described. The capabilities of this method are evaluated via measurements of TE noise from a NACA 63-215 airfoil model and from a cylindrical rod. This TE noise measurement approach is compared to one that is based on the cross spectral analysis of output signals from a pair of microphones (COP method). Advantages and limitations of both methods are examined. It is shown that the microphone array can accurately measures TE noise and captures its two-dimensional characteristic over a large frequency range for any TE configuration as long as noise contamination from extraneous sources is within bounds. The COP method is shown to also accurately measure TE noise but over a more limited frequency range that narrows for increased TE thickness. Finally, the applicability and generality of an airfoil self-noise prediction method was evaluated via comparison to the experimental data obtained using the COP and array measurement methods. The predicted and experimental results are shown to agree over large frequency ranges.
    Keywords: Acoustics
    Type: Aeroacoustics; Volume 1; No. 4; 329-353
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: This report presents the key results obtained by the Vibration and Acoustics Laboratories at Virginia Tech over the year from November 1997 to December 1998 on the Active Noise Control of Turbofan Engines research project funded by NASA Langley Research Center. The concept of implementing active noise control techniques with fuselage-mounted error sensors is investigated both analytically and experimentally. The analytical part of the project involves the continued development of an advanced modeling technique to provide prediction and design guidelines for application of active noise control techniques to large, realistic high bypass engines of the type on which active control methods are expected to be applied. Results from the advanced analytical model are presented that show the effectiveness of the control strategies, and the analytical results presented for fuselage error sensors show good agreement with the experimentally observed results and provide additional insight into the control phenomena. Additional analytical results are presented for active noise control used in conjunction with a wavenumber sensing technique. The experimental work is carried out on a running JT15D turbofan jet engine in a test stand at Virginia Tech. The control strategy used in these tests was the feedforward Filtered-X LMS algorithm. The control inputs were supplied by single and multiple circumferential arrays of acoustic sources equipped with neodymium iron cobalt magnets mounted upstream of the fan. The reference signal was obtained from an inlet mounted eddy current probe. The error signals were obtained from a number of pressure transducers flush-mounted in a simulated fuselage section mounted in the engine test cell. The active control methods are investigated when implemented with the control sources embedded within the acoustically absorptive material on a passively-lined inlet. The experimental results show that the combination of active control techniques with fuselage-mounted error sensors and passive control techniques is an effective means of reducing radiated noise from turbofan engines. Strategic selection of the location of the error transducers is shown to be effective for reducing the radiation towards particular directions in the farfield. An analytical model is used to predict the behavior of the control system and to guide the experimental design configurations, and the analytical results presented show good agreement with the experimentally observed results.
    Keywords: Acoustics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The results of an experimental study on the effects of engine placement and vertical tail configuration on shielding of exhaust broadband noise radiation are presented. This study is part of the high fidelity aeroacoustic test of a 5.8% scale Hybrid Wing Body (HWB) aircraft configuration performed in the 14- by 22-Foot Subsonic Tunnel at NASA Langley Research Center. Broadband Engine Noise Simulators (BENS) were used to determine insertion loss due to shielding by the HWB airframe of the broadband component of turbomachinery noise for different airframe configurations and flight conditions. Acoustics data were obtained from flyover and sideline microphones traversed to predefined streamwise stations. Noise measurements performed for different engine locations clearly show the noise benefit associated with positioning the engine nacelles further upstream on the HWB centerbody. Positioning the engine exhaust 2.5 nozzle diameters upstream (compared to 0.5 nozzle diameters downstream) of the HWB trailing edge was found of particular benefit in this study. Analysis of the shielding performance obtained with and without tunnel flow show that the effectiveness of the fuselage shielding of the exhaust noise, although still significant, is greatly reduced by the presence of the free stream flow compared to static conditions. This loss of shielding is due to the turbulence in the model near-wake/boundary layer flow. A comparison of shielding obtained with alternate vertical tail configurations shows limited differences in level; nevertheless, overall trends regarding the effect of cant angle and vertical location are revealed. Finally, it is shown that the vertical tails provide a clear shielding benefit towards the sideline while causing a slight increase in noise below the aircraft.
    Keywords: Acoustics
    Type: AIAA Paper 2014-2624 , NF1676L-17692 , American Institute of Aeronautics and Astronautices/Council of European Aerospace Societies (AIAA/CEAS) Aeroacoustics Conference; Jun 17, 2014 - Jun 20, 2014; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Acoustic and unsteady surface pressure measurements from two cylinders in tandem configurations were acquired to study the effect of spacing, surface trip and freestream velocity on the radiated noise. The Reynolds number ranged from 1.15x10(exp 5) to 2.17x10(exp 5), and the cylinder spacing varied between 1.435 and 3.7 cylinder diameters. The acoustic and surface pressure spectral characteristics associated with the different flow regimes produced by the cylinders' wake interference were identified. The dependence of the Strouhal number, peak Sound Pressure Level and spanwise coherence on cylinder spacing and flow velocity was examined. Directivity measurements were performed to determine how well the dipole assumption for the radiation of vortex shedding noise holds for the largest and smallest cylinder spacing tested.
    Keywords: Acoustics
    Type: AIAA Paper 2014-2762 , NF1676L-17625 , AIAA/CEAS Aeroacoustics Conference; Jun 17, 2014 - Jun 20, 2014; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: An experimental study of the noise resulting from the interaction of an airfoil with incident turbulence is presented. The test models include NACA0015 airfoils of different chord lengths, a flat plate with a sharp leading edge, and an airfoil of same section as a reference Fowler flap. The airfoils are immersed in nearly isotropic turbulence. Two approaches for performing the noise measurements are used and compared. The effects that turbulence intensity and scales, airfoil geometry, velocity and angle of attack have on the incident turbulence interaction noise are examined. Detailed directivity measurements are presented. It is found that noise spectral levels beyond the peak frequency decrease more with decreasing airfoil leading edge sharpness, and that spectral peak level (at 0 deg. angle of attack) appears to be mostly controlled by the airfoil fs thickness and chord. Increase in turbulence scale and intensity are observed to lead to a uniform increase of the noise spectral levels with an LI(sup 2) dependence (where L is the turbulence longitudinal integral scale and I is the turbulence intensity). Noise levels are found to scale with the 6th power of velocity and the 2nd power of the airfoil chord. Sensitivity to changes in angle of attack appears to have a turbulence longitudinal integral scale to chord (C) ratio dependence, with large effects on noise for L/C greater than or equal to 1 and decreased effects as L/C becomes smaller than 1. For all L/C values, the directivity pattern of the noise resulting from the incident turbulence is seen to remain symmetric with respect to the direction of the mean flow until stall, at which point, the directivity becomes symmetric with respect to the airfoil chord. It is also observed that sensitivity to angle of attack changes is more pronounced on the model suction side than on the model pressure side, and in the higher frequency range of the spectra for the largest airfoils tested (L/C less than 0.24).
    Keywords: Acoustics
    Type: NF1676L-11637 , 17th AIAA/CEAS Aeroacoustics Conference; Jun 06, 2011 - Jun 08, 2011; Portland, OR; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-12
    Description: This report summarizes results of the Hybrid Wing Body (HWB) N2A-EXTE model aeroacoustic test. The N2A-EXTE model was tested in the NASA Langley 14- by 22-Foot Subsonic Tunnel (14x22 Tunnel) from September 12, 2012 until January 28, 2013 and was designated as test T598. This document contains the following main sections: Section 1 - Introduction, Section 2 - Main Personnel, Section 3 - Test Equipment, Section 4 - Data Acquisition Systems, Section 5 - Instrumentation and Calibration, Section 6 - Test Matrix, Section 7 - Data Processing, and Section 8 - Summary. Due to the amount of material to be documented, this HWB test documentation report does not cover analysis of acquired data, which is to be presented separately by the principal investigators. Also, no attempt was made to include preliminary risk reduction tests (such as Broadband Engine Noise Simulator and Compact Jet Engine Simulator characterization tests, shielding measurement technique studies, and speaker calibration method studies), which were performed in support of this HWB test. Separate reports containing these preliminary tests are referenced where applicable.
    Keywords: Acoustics
    Type: NASA/TM-2016-219185 , L-20425 , NF1676L-19028
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-20
    Description: The effects of sound source location, Mach number and angle of attack on the shielding of a laser-induced sound source by a NACA 0012 airfoil are examined. The sound source is a small plasma generated by a high energy, laser beam focused to a point. In-flow microphone measurements are acquired in the midspan plane of the airfoil over a broad range of streamwise stations, and shielding levels are calculated over different frequency ranges from the measurements acquired with and without the airfoil installed. Shielding levels are shown to increase as the source is positioned closer to the mid-chord of the airfoil, and to significantly decrease with increasing flow Mach number, except when the source is positioned near the leading edge of the airfoil. Both with and without flow, changes in angle of attack are associated with a corresponding shift of the shadow region. Finally, the effects of multipath signals, observer distance and signal scatter on the measured shielding levels are discussed.
    Keywords: Acoustics
    Type: NF1676L-28551 , AIAA Aviation Forum 2018; Jun 25, 2018 - Jun 29, 2018; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: The results of an experimental study of the noise from a Continuous Mold-Line Link (CML) flap are presented. Acoustic and unsteady surface pressure measurements were performed on a main element wing section with a half-span CML flap in NASA Langley s Quiet Flow Facility. The acoustic data were acquired with a medium aperture directional array (MADA) of microphones. The Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) method is applied to determine the spatial distribution and strength of the noise sources over the surface of the test model. A Coherent Output Power (COP) method which relates the output from unsteady surface pressure sensors to the output of the MADA is also used to obtain more detailed characteristics of the noise source distribution in the trailing edge region of the CML. These results are compared to those obtained for a blunt flap to quantify the level of noise benefit that is achieved with the CML flap. The results indicate that the noise from the CML region of the flap is 5 to 17 dB lower (depending on flap deflection and Mach number) than the noise from the side edge region of the blunt flap. Lower noise levels are obtained for all frequencies. Spectral analysis of the noise from the cove region of the CML and blunt flap models also reveal a spectral peak in the high frequency range that is related to noise scattering at the trailing edge of the main element. The peaks in the CML and blunt flap cove noise spectra are close in level and often exceed blunt side edge noise. Applying a strip of serrated tape to the trailing edge of the CML flap model main airfoil reduced the peak but increased other noise somewhat. Directivity measurements show that the CML flap can be more directional than the blunt flap.
    Keywords: Acoustics
    Type: NF1676L-12211
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-12
    Description: A technique to reduce the noise radiating from a wing-flap side edge is being developed. As an airplane wing with an extended flap is exposed to a subsonic airflow, air is blown outward through thin rectangular chord-wise slots at various locations along the side edges and side surface of the flap to weaken and push away the vortices that originate in that region of the flap and are responsible for important noise emissions. Air is blown through the slots at up to twice the local flow velocity. The blowing is done using one or multiple slots, where a slot is located along the top, bottom or side surface of the flap along the side edge, or also along the intersection of the bottom (or top) and side surfaces.
    Keywords: Man/System Technology and Life Support
    Type: LAR-16946-1 , NASA Tech Briefs, December 2005; 29
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-10
    Description: PIV measurements of the flow in the region of a flap side edge are presented for several flap configurations. The test model is a NACA 63(sub 2)-215 Hicks Mod-B main element airfoil with a half-span Fowler flap. Air is blown from small slots located along the flap side edge on either the top, bottom or side surfaces. The test set up is described and flow measurements for a baseline and three blowing flap configurations are presented. The effects that the flap tip jets have on the structure of the flap side edge flow are discussed for each of the flap configurations tested. The results indicate that blowing air from a slot located along the top surface of the flap greatly weakened the top vortex system and pushed it further off the top surface. Blowing from the bottom flap surface kept the strong side vortex further outboard while blowing from the side surface only strengthened the flap vortex system. It is concluded that blowing from the top or bottom surfaces of the flap may lead to a reduction of flap side edge noise.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA/TM-2004-213240 , L-19033
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...