ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-18
    Description: The films, which are approximately 10 microns in thickness, are grown epitaxially on polished (100) NaCl substrates at 450 C by plasma enhanced chemical vapor deposition. Upon cooling, the films are separated from the substrate by differential shear stress, leaving free-standing films of Ge which can be handled. Growths are attained by nucleating at minimum plasma power for very brief intervals and then raising the power to 65 W to increase the growth rate to approximately 10 microns/h. It is found that substrate exposure to the plasma at too high a power for too long a time sputters and erodes the surface, thereby substantially degrading the nucleation process and the ultimate growths. It is noted that the free-standing films are visually specular and exhibit a high degree of crystalline order when examined by X-ray diffraction. Auger electron spectroscopy and energy dispersive analysis of X-rays reveal no detectable bulk contamination.
    Keywords: SOLID-STATE PHYSICS
    Type: Journal of Applied Physics (ISSN 0021-8979); 55; 1461-146
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: Thin-film Ge single crystals (approx. 10 microns) have been epitaxially grown on polished NaCl(100) substrates at 450C by using plasma-enhanced chemical vapor deposition. Films on approximately 1 sq cm and larger were separated from the NaCl by either melting the salt or by differential shear stress upon cooling to room temperature. The ordered growth of the Ge was found to be most sensitive to the initial plasma power and to the continuum flow dynamics within the carbon susceptor. The films were visually specular and exhibited a high degree of crysalline order when examined by X-ray diffraction. The films were found to be p-type with a carrier concentration of approximately 3 x 10 to the 16th power/cu cm, a resistivity of 0.11 ohm-cm, and a Hall hole mobility of 1820 sq cm/v/s at room temperature. Vacuum firing minimized the primary contaminant, Na, and corresponding lowered the carrier concentration to 4 x 10 to the 14th power/cu cm.
    Keywords: ENGINEERING (GENERAL)
    Type: NASA-TP-2532 , L-16011 , NAS 1.60:2532
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: Pressure is one of the most important parameters measured when testing models in wind tunnels. For models tested in the cryogenic environment of the National Transonic Facility at NASA Langley Research Center, the technique of utilizing commercially available multichannel pressure modules inside the models is difficult due to the small internal volume of the models and the requirement of keeping the pressure transducer modules within an acceptable temperature range well above the -173 degrees C tunnel temperature. A prototype multichannel pressure transducer module has been designed and fabricated with stable, repeatable sensors and materials optimized for reliable performance in the cryogenic environment. The module has 16 single crystal silicon piezoresistive pressure sensors electrostatically bonded to a metalized Pyrex substrate for sensing the wind tunnel model pressures. An integral temperature sensor mounted on each silicon micromachined pressure sensor senses real-time temperature fluctuations to within 0.1 degrees C to correct for thermally induced non-random sensor drift. The data presented here are from a prototype sensor module tested in the 0.3 M cryogenic tunnel and thermal equilibrium conditions in an environmental chamber which approximates the thermal environment (-173 degrees C to +60 degrees C) of the National Transonic Facility.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: NASA-TM-110146 , NAS 1.15:110146
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...