ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Inorganic chemistry 15 (1976), S. 352-357 
    ISSN: 1520-510X
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 88 (1984), S. 5577-5582 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 86 (1982), S. 1933-1935 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 98 (1993), S. 8348-8348 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 97 (1992), S. 2386-2391 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Electron drift mobilities μe and electron–ion recombination rate constants kr have been measured by the analysis of transient current induced with the irradiation of an x-ray pulse on gaseous or liquid krypton in a cell as a function of external electric field strength. The effects of an external dc electric field on kr up to 12 mTd (1 Td=10−17 V cm2/molecule) in liquid and 63 mTd in gas have been examined. The observed kr values in both liquid and gas phases have been found to be much smaller than those calculated by the reduced Debye equation. The deviation has been compared with recent theoretical studies, leading to the conclusion that recombination in liquid and gaseous krypton is not the usual diffusion-controlled reaction. The kr values in the gas phase increase with an external dc electric field up to a critical electric field strength below which μe values are nearly constant, and above which both kr and μe values descrease with further increase in the electric field for both gaseous and liquid phases.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 24 (1989), S. 4004-4008 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Insoluble platinum double salts were crystallized by a novel method involving a solid-liquid interface. The platinum complexes included Magnus Green Salt, MGS ([Pt(NH)3)4]2+ [PtCl4]2−) and PBC ([Pt(bpy)2]2+[Pt(CN)4]2−). The crystallization and molecular ordering of MGS and PBC on a Nafion membrane were achieved by controlling the diffusion of the cation and anion components to the solid-liquid interface. The electrical conductivity of the MGS film on Nafion was greatly augmented by oxidizing the polynuclear complex. A device consisting of the PBC film on Nafion, methyl viologen, and triethanolamine displayed photoelectrochromism.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 11 (1973), S. 853-872 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Vinyl-type monomers containing the pyrrole ring, such as 2-vinylpyrrole (2-VPyrr), N-(pyrrol-2-yl)methylacrylamide (PMA), N-methyl, N-(pyrrol-2-yl)methylacrylamide (MPMA), 2-allylpyrrole (2-AP), β-(pyrrol-1-yl)ethyl vinyl ether (PEVE), 2-diallyl-aminomethylpyrrole (DAMP), and 3-(2-pyrrolylmethyleneimino)propene-1 (PIP) were synthesized by various reactions involving characteristic properties of the pyrrole ring. Radical homopolymerizations and copolymerizations of these monomers were studied. In the homopolymerization of conjugated monomers such as 2-VPyrr and PMA, chain transfer to the pyrrole-containing monomer was remarkable but not degradative. The copolymerization parameters, that is, the values of r1, r2, Q1, and e1 of 2-VPyrr, were determined to be 0.066, 0.69, 5.53, and -1.36, respectively in the copolymerization of 2-VPyrr (M1) with MMA (M2). The Q and e values of the monomers containing a heteroaromatic ring such as 2-vinylpyrrole, 2-vinylfuran, and 2-vinylthiophene were evaluated by the molecular orbital theory. The e value of PMA was found to be negative (-0.64) in the copolymerization with styrene, although e for acrylamide derivatives is generally positive. This may be explained by the intermolecular hydrogen bonding between the carbonyl group and NH group of PMA. That is, attraction or polarization of π-electrons in the vinyl group of PMA is weakened by such hydrogen bonding. From the results of copolymerization of 2-AP with various comonomers, the comonomers could be classified into three categories: class a monomers, in which both Q and e values are largely positive, can copolymerize with 2-AP; class b monomers, having small e values, homopolymerize and can not copolymerize with 2-AP; class c monomers, in which both Q and e values are small. The Q and e values of the comonomer must be largely positive in order to permit copolymerization with an allyl-type monomer.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 13 (1975), S. 1747-1756 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The polymerization of α-amino acid N-carboxy anhydrides (NCAs) initiated by 4-aminoethylimidazole (histamine) was studied in order to synthesize poly(amino acids) containing an imidazole nucleus at the end of polymer chain. On the basis of the kinetical measurements, it was found that the rate of polymerization is proportional to the first order in both NCA and initiator concentrations and that the initiation reaction is predominantly caused by the primary amine with the highest basicity in a histamine molecule. Binding of the histamine fragment to the end of polymer chain was confirmed by elementary analysis, nuclear magnetic resonance spectroscopy, and measuring the number-average molecular weight of the resulting polymers. It was thus possible to prepare poly(amino acids) with a pendant histamine. In addition, the lowering of the number-average degree of polymerization of the polymers prepared was observed under the condition that the initial molar ratio of NCA to histamine was larger. It was caused by the reinitiation of polymerization by the imidazole nucleus at the chain end.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 12 (1974), S. 1243-1255 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The copper complexes and the cobalt complex with the ligand of 3-(2-pyrrolylmethyl-enimino)propene-1 (PIP) or p-(2-pyrrolylmethylenimino)styrene (PIS) were synthesized and homopolymerizations and the copolymerization with styrene, acrylonitrile, methyl methacrylate and acrylic acid studied. In the polymerization of chelate monomers, inhibition of radical polymerization by the central metal ion was observed, but the chelate polymer could be obtained only if the initiator was present in higher concentrations in the feed. It is considered that the strength of inhibition depends on the electronic configuration of d-orbitals of the central metal ion. The initiation mechanism of the cupric chelate monomer may be reduction of the metal ion by the redox reaction with a primary radical via the intramolecular electron transfer through the π-conjugated system of the ligand prior to the propagation step. This mechanism was verified by studying the redox reaction of various copper complexes with DPPH. In the system of the copper complex containing PIS and acylic acid the alternating copolymer could be obtained at any mole fraction of monomer mixture in feed.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 13 (1975), S. 1505-1514 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: An interpolymer complex was prepared by mixing aqueous solutions of poly(ethylene oxide) (PEO) and of a poly(carboxylic acid), i.e., poly(acrylic acid)(PAA), poly(methacrylic acid)(PMAA), or styrene-maleic acid copolymer(PSMA). The complexation mechanism was discussed on the basis of results of such experimental methods as viscosity, potentiometric titration, and turbidimetry. The hydrogen bond is primarily involved in these complexations, but the influence of hydrophobic interaction on complexation can not be ignored. If the degree of dissociation α of carboxylic acid or the degree of polymerization Pn of PEO was perceptibly changed, a stable complex was obtained at about α 0.1 or Pn(PEO) = 40 for PMAA, 200 for PAA. This fact indicates that more than a definite number of binding sites are necessary for a stable interpolymer complex to be formed and that cooperative interaction among active sites plays an important role in complex formation.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...