ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 115 (1993), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: In recent years remagnetization of orogenic belts has been explained by fluid migration through rocks undergoing deformation. A laboratory study of remagnetization is presented in which varying amounts of iron (0-13.5 weight per cent Fe2O3) are adsorbed onto smectite surfaces. All smectite samples contain structural Fe (III) which is located in octahedral sites and is thermally stable up to 700 d̀C. An increase in the amount of iron adsorbed onto the clay surface leads to the formation of ferric nanophases in which parts are magnetic. Mineralogical changes that occur during thermal treatment between room temperature and 700 d̀C were monitored using electron spin resonance (ESR), bulk susceptibility, acquisition of isothermal remanent magnetization (IRM) and Curie temperature analysis. After heating the samples to 250 d̀C, a new ferrimagnetic phase is created as indicated by ESR and IRM acquisition. ESR spectra, IRM acquisition and Curie analyses suggest that magnetite is the predominant phase that is being created. These grains continue to be created and grow with heating up to 500 d̀C. Above this temperature a decrease in the intensity of the IRM at 1T suggests that the phase is being transformed into haematite. The thermal experiments on iron-loaded smectites show that surface-induced processes can lead to the formation of new magnetic minerals under conditions characteristic of low-grade metamorphism.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-10-08
    Description: The Martinsburg Formation at Lehigh Gap, Pennsylvania, undergoes a transition from shales to slates, reflecting local progressive deformation on an outcrop scale. The anisotropy of magnetic susceptibility (AMS) was measured in low and high fields. The high-field measurements show that the magnetic susceptibility is controlled by the paramagnetic minerals. X-ray goniometry was used to define the mineral fabrics of chlorite and mica. The phyllosilicates are initially oriented preferentially in the bedding plane and are gradually reoriented into the cleavage plane through rotation, microfolding and recrystallization. The AMS fabric mirrors this change in mineral fabric. The magnetic fabric is originally oblate in the least deformed site, with the plane of flattening parallel to bedding, and becomes prolate with increasing deformation, reflecting the development of pencil structure in the shales. In the most deformed site, shortening results in a tectonic cleavage fabric, which controls the magnetic fabric. A similar pattern of fabric development can be observed on a regional scale at other sites across the central Appalachian fold and thrust belt. The AMS and mineral fabric from the Martinsburg Formation has undergone bedding compaction in the foreland near the Allegheny Front. The AMS and textural analysis both show that, as the deformation increases towards the hinterland, prolate fabrics develop and in the most deformed sites slaty cleavage controls both the mineral and magnetic fabrics.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-03-22
    Print ISSN: 0031-9007
    Electronic ISSN: 1079-7114
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-08-05
    Description: The Sakarya Zone and the Kırsehir Block of northern Turkey are separated by the Izmir–Ankara–Erzincan Suture (IAES) Zone which is the remnant of the northern branch of the Neotethys Ocean. During the closure of the IAES in the Late Cretaceous, northwards drift of the Kırsehir Block and its eventual indentation into the Sakarya Zone produced crustal deformation defined by thrusts and reverse faults, mainly between the indenting Kırsehir Block and the Sakarya Zone. Previous palaeomagnetic studies in the eastern part of the Pontides and the Sakarya Zone showed that palaeomagnetic declinations could record the deformation that resulted in the curvature of the IAES. In order to define the tectonic deformation of the northern part of the Kırsehir Block, we present new palaeomagnetic data from 57 different sites that include Mesozoic–Cenozoic sedimentary and volcanic rocks. The results from Late Cretaceous rocks (40 sites) indicate that large clockwise rotations of c.  140–165° occurred in the eastern limb of the bend, while anticlockwise rotations progressively decreased from c.  80° to 55° from SW to NW in the western limb of the bend. In contrast, small clockwise and anticlockwise rotations are observed in the flat-lying segment of the suture zone. These rotation patterns are consistent with the geometrical trends of the IAES in northern Turkey. Declinations of seven different Middle Eocene sites within the Kırsehir Block are rotated anticlockwise by c.  30–10°. This indicates that the deformation in the Sakarya Zone and the Kırsehir Block continued in the Middle Eocene.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-08-15
    Description: Anisotropy of magnetic susceptibility (AMS) is often used as a proxy for mineral fabric in deformed rocks. To do so quantitatively, it is necessary to quantify the intrinsic magnetic anisotropy of single crystals of rock-forming minerals. Amphiboles are common in mafic igneous and metamorphic rocks and often define rock texture due to their general prismatic crystal habits. Amphiboles may dominate the magnetic anisotropy in intermediate to felsic igneous rocks and in some metamorphic rock types, because they have a high Fe concentration and they can develop a strong crystallographic preferred orientation. In this study, the AMS is characterized in 28 single crystals and 1 crystal aggregate of compositionally diverse clino- and ortho-amphiboles. High-field methods were used to isolate the paramagnetic component of the anisotropy, which is unaffected by ferromagnetic inclusions that often occur in amphibole crystals. Laue imaging, laser ablation-inductively coupled plasma-mass spectrometry, and Mössbauer spectroscopy were performed to relate the magnetic anisotropy to crystal structure and Fe concentration. The minimum susceptibility is parallel to the crystallographic a* -axis and the maximum susceptibility is generally parallel to the crystallographic b -axis in tremolite, actinolite, and hornblende. Gedrite has its minimum susceptibility along the a -axis, and maximum susceptibility aligned with c . In richterite, however, the intermediate susceptibility is parallel to the b -axis and the minimum and maximum susceptibility directions are distributed in the a-c plane. The degree of anisotropy, k ', increases generally with Fe concentration, following a linear trend: k ' = 1.61 x 10 –9 Fe – 1.17 x 10 –9 m 3 /kg. Additionally, it may depend on the Fe 2+ /Fe 3+ ratio. For most samples, the degree of anisotropy increases by a factor of approximately 8 upon cooling from room temperature to 77 K. Ferroactinolite, one pargasite crystal and riebeckite show a larger increase, which is related to the onset of local ferromagnetic (s.l.) interactions below about 100 K. This comprehensive data set increases our understanding of the magnetic structure of amphiboles, and it is central to interpreting magnetic fabrics of rocks whose AMS is controlled by amphibole minerals.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-08-16
    Description: The Sakarya Zone and the Kırsehir Block of northern Turkey are separated by the Izmir–Ankara–Erzincan Suture (IAES) Zone which is the remnant of the northern branch of the Neotethys Ocean. During the closure of the IAES in the Late Cretaceous, northwards drift of the Kırsehir Block and its eventual indentation into the Sakarya Zone produced crustal deformation defined by thrusts and reverse faults, mainly between the indenting Kırsehir Block and the Sakarya Zone. Previous palaeomagnetic studies in the eastern part of the Pontides and the Sakarya Zone showed that palaeomagnetic declinations could record the deformation that resulted in the curvature of the IAES. In order to define the tectonic deformation of the northern part of the Kırsehir Block, we present new palaeomagnetic data from 57 different sites that include Mesozoic–Cenozoic sedimentary and volcanic rocks. The results from Late Cretaceous rocks (40 sites) indicate that large clockwise rotations of c. 140–165° occurred in the eastern limb of the bend, while anticlockwise rotations progressively decreased from c. 80° to 55° from SW to NW in the western limb of the bend. In contrast, small clockwise and anticlockwise rotations are observed in the flat-lying segment of the suture zone. These rotation patterns are consistent with the geometrical trends of the IAES in northern Turkey. Declinations of seven different Middle Eocene sites within the Kırsehir Block are rotated anticlockwise by c. 30–10°. This indicates that the deformation in the Sakarya Zone and the Kırsehir Block continued in the Middle Eocene.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-02-15
    Description: Inclination shallowing of detrital remanent magnetization in sedimentary strata has solely been constrained for the mechanical processes associated with mud deposition and shallow compaction of clay-rich sediment, even though a significant part of mud diagenesis involves chemical compaction. Here we report, for the first time, on the laboratory simulation of magnetic assemblage development in a chemically compacting illite shale powder of natural origin. The experimental procedure comprised three compaction stages that, when combined, simulate the diagenesis and low-grade metamorphism of illite mud. First, the full extent of load-sensitive mechanical compaction is simulated by room temperature dry axial compression. Subsequently, temperature controlled chemical compaction is initiated by exposing the sample in two stages to amphibolite or granulite facies conditions (temperature is 490 to 750°C and confining pressure is 170 or 300 MPa) both in the absence (confining pressure only) and presence of a deformation stress field (axial compression or confined torsion). Thermodynamic equilibrium in the last two compaction stages was not reached, but illite and mica dehydroxylation initiated, thus providing a wet environment. Magnetic properties were characterized by magnetic susceptibility and its anisotropy (AMS) in both high- and low-applied field. Acquisition of isothermal remanent magnetization (IRM), stepwise three-component thermal de-magnetization of IRM and first-order reversal curves were used to characterize the remanence-bearing minerals. During the chemical compaction experiments ferrimagnetic iron-sulphides formed after reduction of magnetite and detrital pyrite in a low sulphur fugacity environment. The degree of low-field AMS is unaffected by porosity reduction from 15 to ~1 per cent, regardless of operating conditions and compaction history. High-field paramagnetic AMS increases with compaction for all employed stress regimes and conditions, and is attributed to illite transformation to iron-bearing mica. AMS of authigenic iron-sulphide minerals remained constant during compaction indicating an independence of ferrimagnetic fabric development to chemical compaction in illite shale powder. The decoupling of paramagnetic and ferrimagnetic AMS development during chemical compaction of pelite contrasts with findings from mechanical compaction studies.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-02-26
    Description: Feldspars are the most abundant rock-forming minerals in the Earth's crust, but their magnetic properties have not been rigorously studied. This work focuses on the intrinsic magnetic anisotropy of 31 feldspar samples with various chemical compositions. Because feldspar is often twinned or shows exsolution textures, measurements were performed on twinned and exsolved samples as well as single crystals. The anisotropy is controlled by the diamagnetic susceptibility and displays a consistent orientation of principal susceptibility axes; the most negative or minimum susceptibility is parallel to [010], and the maximum (least negative) is close to the crystallographic [001] axis. However, the magnetic anisotropy is weak when compared to other rock-forming minerals, 1.53 x 10 –9 m 3 kg –1 at maximum. Therefore, lower abundance minerals, such as augite, hornblende or biotite, often dominate the bulk paramagnetic anisotropy of a rock. Ferromagnetic anisotropy is not significant in most samples. In the few samples that do show ferromagnetic anisotropy, the principal susceptibility directions of the ferromagnetic subfabric do not display a systematic orientation with respect to the feldspar lattice. These results suggest that palaeointensity estimates of the geomagnetic field made on single crystals of feldspar will not be affected by a systematic orientation of the ferromagnetic inclusions within the feldspar lattice.
    Keywords: Geomagnetism, Rock Magnetism and Palaeomagnetism
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-02-27
    Description: Feldspars are the most abundant rock-forming minerals in the Earth's crust, but their magnetic properties have not been rigorously studied. This work focuses on the intrinsic magnetic anisotropy of 31 feldspar samples with various chemical compositions. Because feldspar is often twinned or shows exsolution textures, measurements were performed on twinned and exsolved samples as well as single crystals. The anisotropy is controlled by the diamagnetic susceptibility and displays a consistent orientation of principal susceptibility axes; the most negative or minimum susceptibility is parallel to [010], and the maximum (least negative) is close to the crystallographic [001] axis. However, the magnetic anisotropy is weak when compared to other rock-forming minerals, 1.53 x 10 –9 m 3 kg –1 at maximum. Therefore, lower abundance minerals, such as augite, hornblende or biotite, often dominate the bulk paramagnetic anisotropy of a rock. Ferromagnetic anisotropy is not significant in most samples. In the few samples that do show ferromagnetic anisotropy, the principal susceptibility directions of the ferromagnetic subfabric do not display a systematic orientation with respect to the feldspar lattice. These results suggest that palaeointensity estimates of the geomagnetic field made on single crystals of feldspar will not be affected by a systematic orientation of the ferromagnetic inclusions within the feldspar lattice.
    Keywords: Geomagnetism, Rock Magnetism and Palaeomagnetism
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-10-09
    Description: We report on a palaeomagnetic study from Mesozoic sedimentary and volcanic rocks from the conjugate areas of the Western Black Sea Basin; that is, the Crimean Peninsula in the north and the Western and Central Pontides in the south, to better constrain their palaeogeographic relationships within the southern margin of Eurasia. From the study of 87 sites in Crimea, we found that Triassic to Lower Jurassic sandstones and siltstones from the Tavric series, and Middle–Upper Jurassic sandstones, siltstones and limestones exhibit remagnetization. Both fold and conglomerate tests confirm a widespread remagnetization in Crimea. Comparison of palaeopoles with the expected reference apparent polar wander path (APWP) of Eurasia and results from conglomerate tests suggest that the remagnetization occurred in the Early Cretaceous. In the Central Pontides, no reliable palaeomagnetic results can be obtained from Triassic–Upper Jurassic rocks, however, a negative fold test in Upper Jurassic–Lower Cretaceous rocks from the Western Pontides shows that the palaeolatitude agrees with Lower Cretaceous data from Crimea. Our new palaeomagnetic results indicate a pervasive remagnetization in Crimea and the Western Pontides that could be attributed to the rifting phase of the Black Sea Basin during Lower Cretaceous.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...