ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2016-08-04
    Description: Complex interactions between plants and soil microorganisms drive key ecosystem and community properties such as productivity and diversity. In nutrient-poor systems such as sand dunes, plant traits and fungal symbioses related to nutrient acquisition can strongly influence vegetation dynamics. We investigated plant and fungal communities in a relic foredune plain located on an archipelago in Québec, Canada. We detected distinct communities across the edaphic and successional gradient. Our results showed a clear increase in plant species richness, as well as in the diversity of nutrient-acquisition strategies. We also found a strong correlation between aboveground vegetation and soil fungal communities, and both responded similarly to soil physicochemical properties. Soil pH influenced the composition of plant and fungal communities, and could act as an important environmental filter along this relic foredune plain. The increasing functional diversity in plant nutrient-acquisition strategies across the gradient might favor resource partitioning and facilitation among co-occurring plant species. The coordinated changes in soil microbial and plant communities highlight the importance of aboveground–belowground linkages and positive biotic interactions during ecological succession in nutrient-poor environments.
    Print ISSN: 0168-6496
    Electronic ISSN: 1574-6941
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-09-19
    Description: Comparative mitochondrial genomics of arbuscular mycorrhizal fungi (AMF) provide new avenues to overcome long-lasting obstacles that have hampered studies aimed at understanding the community structure, diversity, and evolution of these multinucleated and genetically polymorphic organisms. AMF mitochondrial (mt) genomes are homogeneous within isolates, and their intergenic regions harbor numerous mobile elements that have rapidly diverged, including homing endonuclease genes, small inverted repeats, and plasmid-related DNA polymerase genes ( dpo ), making them suitable targets for the development of reliable strain-specific markers. However, these elements may also lead to genome rearrangements through homologous recombination, although this has never previously been reported in this group of obligate symbiotic fungi. To investigate whether such rearrangements are present and caused by mobile elements in AMF, the mitochondrial genomes from two Glomeraceae members (i.e., Glomus cerebriforme and Glomus sp. ) with substantial mtDNA synteny divergence, were sequenced and compared with available glomeromycotan mitochondrial genomes . We used an extensive nucleotide/protein similarity network-based approach to investigate dpo diversity in AMF as well as in other organisms for which sequences are publicly available. We provide strong evidence of dpo -induced inter-haplotype recombination, leading to a reshuffled mitochondrial genome in Glomus sp. These findings raise questions as to whether AMF single spore cultivations artificially underestimate mtDNA genetic diversity. We assessed potential dpo dispersal mechanisms in AMF and inferred a robust phylogenetic relationship with plant mitochondrial plasmids. Along with other indirect evidence, our analyses indicate that members of the Glomeromycota phylum are potential donors of mitochondrial plasmids to plants.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2015-02-14
    Description: Although heterokaryons have been reported in nature, multicellular organisms are generally assumed genetically homogeneous. Here, we investigate the case of arbuscular mycorrhizal fungi (AMF) that form symbiosis with plant roots. The growth advantages they confer to their hosts are of great potential benefit to sustainable agricultural practices. However, measuring genetic diversity for these coenocytes is a major challenge: Within the same cytoplasm, AMF contain thousands of nuclei and show extremely high levels of genetic variation for some loci. The extent and physical location of polymorphism within and between AMF genomes is unclear. We used two complementary strategies to estimate genetic diversity in AMF, investigating polymorphism both on a genome scale and in putative single copy loci. First, we used data from whole-genome pyrosequencing of four AMF isolates to describe genetic diversity, based on a conservative network-based clustering approach. AMF isolates showed marked differences in genome-wide diversity patterns in comparison to a panel of control fungal genomes. This clustering approach further allowed us to provide conservative estimates of Rhizophagus spp. genomes sizes. Second, we designed new putative single copy genomic markers, which we investigated by massive parallel amplicon sequencing for two Rhizophagus irregularis and one Rhizophagus sp. isolates. Most loci showed high polymorphism, with up to 103 alleles per marker. This polymorphism could be distributed within or between nuclei. However, we argue that the Rhizophagus isolates under study might be heterokaryotic, at least for the putative single copy markers we studied. Considering that genetic information is the main resource for identification of AMF, we suggest that special attention is warranted for the study of these ecologically important organisms.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-01-24
    Description: Arbuscular mycorrhizal fungi (AMF) are multinucleated and coenocytic organisms, in which the extent of the intraisolate nuclear genetic variation has been a source of debate. Conversely, their mitochondrial genomes (mtDNAs) have appeared to be homogeneous within isolates in all next generation sequencing (NGS)-based studies. Although several lines of evidence have challenged mtDNA homogeneity in AMF, extensive survey to investigate intraisolate allelic diversity has not previously been undertaken. In this study, we used a conventional polymerase chain reaction -based approach on selected mitochondrial regions with a high-fidelity DNA polymerase, followed by cloning and Sanger sequencing. Two isolates of Rhizophagus irregularis were used, one cultivated in vitro for several generations (DAOM-197198) and the other recently isolated from the field (DAOM-242422). At different loci in both isolates, we found intraisolate allelic variation within the mtDNA and in a single copy nuclear marker, which highlighted the presence of several nonsynonymous mutations in protein coding genes. We confirmed that some of this variation persisted in the transcriptome, giving rise to at least four distinct nad4 transcripts in DAOM-197198. We also detected the presence of numerous mitochondrial DNA copies within nuclear genomes (numts), providing insights to understand this important evolutionary process in AMF. Our study reveals that genetic variation in Glomeromycota is higher than what had been previously assumed and also suggests that it could have been grossly underestimated in most NGS-based AMF studies, both in mitochondrial and nuclear genomes, due to the presence of low-level mutations.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-01-12
    Description: Mitochondrial (mt) genomes are intensively studied in Ascomycota and Basidiomycota , but they are poorly documented in basal fungal lineages. In this study, we sequenced the complete mtDNA of Rhizophagus sp. DAOM 213198, a close relative to Rhizophagus irregularis , a widespread, ecologically and economical relevant species belonging to Glomeromycota . Unlike all other known taxonomically close relatives harboring a full-length circular chromosome, mtDNA of Rhizophagus sp. reveals an unusual organization with two circular chromosomes of 61,964 and 29,078 bp. The large chromosome contained nine protein-coding genes ( atp9 , nad5 , cob , nad4 , nad1 , nad4L , cox1 , cox2 , and atp8 ), small subunit rRNA gene ( rns ), and harbored 20 tRNA-coding genes and 10 orf s, while the small chromosome contained five protein-coding genes ( atp6 , nad2 , nad3 , nad6 , and cox3 ), large subunit rRNA gene ( rnl ) in addition to 5 tRNA-coding genes, and 8 plasmid-related DNA polymerases ( dpo ). Although structural variation of plant mt genomes is well documented, this study is the first report of the presence of two circular mt genomes in arbuscular mycorrhizal fungi. Interestingly, the presence of dpo at the breakage point in intergenes cox1-cox2 and rnl-atp6 for large and small mtDNAs, respectively, could be responsible for the conversion of Rhizophagus sp . mtDNA into two chromosomes. Using quantitative real-time polymerase chain reaction, we found that both mtDNAs have an equal abundance. This study reports a novel mtDNA organization in Glomeromycota and highlights the importance of studying early divergent fungal lineages to describe novel evolutionary pathways in the fungal kingdom.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-08-23
    Description: Gigaspora rosea is a member of the arbuscular mycorrhizal fungi (AMF; Glomeromycota) and a distant relative of Glomus species that are beneficial to plant growth. To allow for a better understanding of Glomeromycota, we have sequenced the mitochondrial DNA of G. rosea . A comparison with Glomus mitochondrial genomes reveals that Glomeromycota undergo insertion and loss of mitochondrial plasmid-related sequences and exhibit considerable variation in introns. The gene order between the two species is almost completely reshuffled. Furthermore, Gigaspora has fragmented cox1 and rns genes, and an unorthodox initiator tRNA that is tailored to decoding frequent UUG initiation codons. For the fragmented cox1 gene, we provide evidence that its RNA is joined via group I–mediated trans -splicing, whereas rns RNA remains in pieces. According to our model, the two cox1 precursor RNA pieces are brought together by flanking cox1 exon sequences that form a group I intron structure, potentially in conjunction with the nad5 intron 3 sequence. Finally, we present analyses that address the controversial phylogenetic association of Glomeromycota within fungi. According to our results, Glomeromycota are not a separate group of paraphyletic zygomycetes but branch together with Mortierellales, potentially also Harpellales.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...