ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Materials science forum Vol. 215-216 (June 1996), p. 297-302 
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-9672
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Based on radiation hydrodynamics modeling of stellar convection zones, a diffusion scheme has been devised describing the downward penetration of convective motions beyond the Schwarzschild boundary (overshoot) into the radiative interior. This scheme of exponential diffusive overshoot has already been successfully applied to AGB stars. Here we present an application to the Sun in order to determine the time scale and depth extent of this additional mixing, i.e. diffusive overshoot at the base of the convective envelope. We calculated the associated destruction of lithium during the evolution towards and on the main-sequence. We found that the slow-mixing processes induced by the diffusive overshoot may lead to a substantial depletion of lithium during the Sun's main-sequence evolution.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2015-12-05
    Description: We investigate the evolution of super-AGB (SAGB) thermal pulse (TP) stars for a range of metallicities ( Z ) and explore the effect of convective boundary mixing (CBM). With decreasing metallicity and evolution along the TP phase, the He-shell flash and the third dredge-up (TDU) occur closer together in time. After some time (depending upon the CBM parametrization), efficient TDU begins while the pulse-driven convection zone (PDCZ) is still present, causing a convective exchange of material between the PDCZ and the convective envelope. This results in the ingestion of protons into the convective He-burning pulse. Even small amounts of CBM encourage the interaction of the convection zones leading to transport of protons from the convective envelope into the He layer. H-burning luminosities exceed 10 9 (in some cases 10 10 ) L . We also calculate models of dredge-out in the most massive SAGB stars and show that the dredge-out phenomenon is another likely site of convective-reactive H- 12 C combustion. We discuss the substantial uncertainties of stellar evolution models under these conditions. Nevertheless, the simulations suggest that in the convective-reactive H-combustion regime of H ingestion the star may encounter conditions for the intermediate neutron capture process ( i -process). We speculate that some CEMP-s/r stars could originate in i -process conditions in the H ingestion phases of low- Z SAGB stars. This scenario would however suggest a very low electron-capture supernova rate from SAGB stars. We also simulate potential outbursts triggered by such H ingestion events, present their light curves and briefly discuss their transient properties.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-12-10
    Description: Recently, an increasing number of studies were devoted to measure the abundances of neutron-capture elements heavier than iron in stars belonging to Galactic Open Clusters (OCs). OCs span a sizeable range in metallicity (–0.6 ≤ [Fe/H] ≤ +0.4), and they show abundances of light elements similar to disc stars of the same age. A different pattern is observed for heavy elements. A large scatter is observed for Ba, with most OCs showing [Ba/Fe] and [Ba/La] overabundant with respect to the Sun. The origin of this overabundance is not clearly understood. With the goal of providing new observational insights, we determined radial velocities, atmospheric parameters and chemical composition of 27 giant stars members of five OCs: Cr 110, Cr 261, NGC 2477, NGC 2506 and NGC 5822. We used high-resolution spectra obtained with the UVES spectrograph at European Southern Observatory Paranal. We perform a detailed spectroscopic analysis of these stars to measure the abundance of up to 22 elements per star. We study the dependence of element abundance on metallicity and age with unprecedented detail, complementing our analysis with data culled from the literature. We confirm the trend of Ba overabundance in OCs, and show its large dispersion for clusters younger than ~4 Gyr. Finally, the implications of our results for stellar nucleosynthesis are discussed. We show in this work that the Ba enrichment compared to other neutron-capture elements in OCs cannot be explained by the contributions from the slow neutron-capture process and the rapid neutron-capture process. Instead, we argue that this anomalous signature can be explained by assuming an additional contribution by the intermediate neutron-capture process.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-03-13
    Description: We demonstrate that among the potential sources of the primordial abundance variations of the proton-capture elements in globular-cluster stars proposed so far, such as the hot-bottom burning in massive asymptotic giant branch stars and H burning in the convective cores of supermassive and fast-rotating massive main-sequence (MS) stars, only the supermassive MS stars with M  〉 10 4 M can explain all the observed abundance correlations without any fine-tuning of model parameters. We use our assumed chemical composition for the pristine gas in M13 (NGC 6205) and its mixtures with 50 and 90 per cent of the material partially processed in H burning in the 6 10 4 M MS model star as the initial compositions for the normal, intermediate, and extreme populations of low-mass stars in this globular cluster, as suggested by its O–Na anticorrelation. We evolve these stars from the zero-age MS to the red giant branch (RGB) tip with the thermohaline and parametric prescriptions for the RGB extra mixing. We find that the 3 He-driven thermohaline convection cannot explain the evolutionary decline of [C/Fe] in M13 RGB stars, which, on the other hand, is well reproduced with the universal values for the mixing depth and rate calibrated using the observed decrease of [C/Fe] with M V in the globular cluster NGC5466 that does not have the primordial abundance variations.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-01-14
    Description: When carbon is ignited off-centre in a CO core of a super-asymptotic giant branch star, its burning in a convective shell tends to propagate to the centre. Whether the C flame will actually be able to reach the centre depends on the efficiency of extra mixing beneath the C convective shell. Whereas thermohaline mixing is too inefficient to interfere with the C-flame propagation, convective boundary mixing can prevent the C burning from reaching the centre. As a result, a C–O–Ne white dwarf (WD) is formed, after the star has lost its envelope. Such a ‘hybrid’ WD has a small CO core surrounded by a thick ONe zone. In our 1D stellar evolution computations, the hybrid WD is allowed to accrete C-rich material, as if it were in a close binary system and accreted H-rich material from its companion with a sufficiently high rate at which the accreted H would be processed into He under stationary conditions, assuming that He could then be transformed into C. When the mass of the accreting WD approaches the Chandrasekhar limit, we find a series of convective Urca shell flashes associated with high abundances of 23 Na and 25 Mg. They are followed by off-centre C ignition leading to convection that occupies almost the entire star. To model the Urca processes, we use the most recent well-resolved data for their reaction and neutrino-energy loss rates. Because of the emphasized uncertainty of the convective Urca process in our hybrid WD models of Type Ia supernova (SN Ia) progenitors, we consider a number of their potentially possible alternative instances for different mixing assumptions, all of which reach a phase of explosive C ignition, either off or in the centre. Our hybrid SN Ia progenitor models have much lower C-to-O abundance ratios at the moment of the explosive C ignition than their pure CO counterparts, which may explain the observed diversity of the SNe Ia.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-01-16
    Description: Massive stars are key sources of radiative, kinetic and chemical feedback in the Universe. Grids of massive star models computed by different groups each using their own codes, input physics choices and numerical approximations, however, lead to inconsistent results for the same stars. We use three of these 1D codes – genec , kepler and mesa – to compute non-rotating stellar models of 15, 20 and 25 M and compare their nucleosynthesis. We follow the evolution from the main sequence until the end of core helium burning. The genec and kepler models hold physics assumptions used in large grids of published models. The mesa code was set up to use convective core overshooting such that the CO core masses are consistent with those obtained by genec . For all models, full nucleosynthesis is computed using the NuGrid post-processing tool mppnp . We find that the surface abundances predicted by the models are in reasonable agreement. In the helium core, the standard deviation of the elemental overproduction factors for Fe to Mo is less than 30 per cent – smaller than the impact of the present nuclear physics uncertainties. For our three initial masses, the three stellar evolution codes yield consistent results. Differences in key properties of the models, e.g. helium and CO core masses and the time spent as a red supergiant, are traced back to the treatment of convection and, to a lesser extent, mass loss. The mixing processes in stars remain the key uncertainty in stellar modelling. Better constrained prescriptions are thus necessary to improve the predictive power of stellar evolution models.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-06-19
    Description: Classical novae are the result of thermonuclear flashes of hydrogen accreted by CO or ONe white dwarfs, leading eventually to the dynamic ejection of the surface layers. These are observationally known to be enriched in heavy elements, such as C, O and Ne, that must originate in layers below the H-flash convection zone. Building on our previous work, we now present stellar evolution simulations of ONe novae and provide a comprehensive comparison of our models with published ones. Some of our models include exponential convective boundary mixing to account for the observed enrichment of the nova ejecta even when accreted material has a solar abundance distribution. Our models produce maximum temperature evolution profiles and nucleosynthesis yields in good agreement with models that generate enriched ejecta by assuming that the accreted material was pre-mixed. We confirm for ONe novae the result we reported previously, i.e. we found that 3 He could be produced in situ in solar-composition envelopes accreted with slow rates ( $\dot{M} 〈 10^{-10}\,\mathrm{M}_{\odot }\,\mbox{yr}^{-1}$ ) by cold ( T WD 〈 10 7 K) CO WDs, and that convection was triggered by 3 He burning before the nova outburst in that case. In addition, we now find that the interplay between the 3 He production and destruction in the solar-composition envelope accreted with an intermediate rate, e.g. $\dot{M} = 10^{-10}\,\mathrm{M}_{\odot }\,\mbox{yr}^{-1}$ , by the 1.15 M ONe WD with a relatively high initial central temperature, e.g. T WD = 15 x 10 6  K, leads to the formation of a thick radiative buffer zone that separates the bottom of the convective envelope from the WD surface. We present detailed nucleosynthesis calculations based on the post-processing technique, and demonstrate in which way much simpler single-zone T and trajectories extracted from the multi-zone stellar evolution simulations can be used, in lieu of full multi-zone simulations, to analyse the sensitivity of nova abundance predictions on nuclear reaction rate uncertainties. Trajectories for both CO and ONe nova models for different central temperatures and accretion rates are provided. We compare our nova simulations with observations of novae and pre-solar grains believed to originate in novae.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-04-15
    Description: Evolution of a Type Ia supernova (SN Ia) progenitor requires formation of a CO white dwarf (WD), which implies a dependence on the C-burning rate (CBR). It can also be affected by the recently identified possibility of C-flame quenching by convective boundary mixing. We present first results of our study of the combined effect of these two potential sources of uncertainty on the SN Ia progenitor evolution. We consider the possibility that the CBR is higher than its currently recommended value by as much as a factor of 1000 if unidentified resonances are important, or that it is significantly lower because of the hindrance effect. For stellar models that assume the Schwarzschild boundary for convection, the maximum initial mass for the formation of CO WDs increases from M i   5.5 M for the CBR factor of 1000 to M i   7.0 M for the CBR factor of 0.01. For C-flame quenching models, hybrid C–O–Ne WDs form for a range of initial mass of M i   1 M , which increases a fraction of stars that form WDs capable of igniting C in a thermonuclear runaway. The most extreme case is found for the CBR factor of 0.1 that is supported by the hindrance model. This nuclear physics assumption, combined with C-flame quenching, leads to the formation of a hybrid C–O–Ne WD with a mass of 1.3 M . Such WDs do not need to accrete much mass to reach the Chandrasekhar limit.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...