ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1572-9729
    Keywords: biofilm ; MEK ; VOC ; consortium ; Alcaligenes denitrificans ; Geotrichum candidum ; Fusarium oxysporum ; gas/liquid mass transfer ; pH ; sloughing ; waste-gas treatment
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A novel type of bioreactor was designed to clean VOCs-containing air.The operation of this reactor consists in mixing the polluted gas and a mistof nutrient solution in the presence of microorganisms in order to maximizecontact and transfer between gas, liquid and microorganisms and to promotethe degradation kinetics and the relative removal efficiency of thepollutant. A bacterial consortium acclimatized to MEK and containing apreponderance of Alcaligenes denitrificans was established under non-axenicconditions. On the tubular reactor's glass walls, a continuous biofilm wasdeveloped. This biofilm was rapidly contaminated by two fungi able todegrade MEK: Geotrichum candidum and Fusarium oxysporum. Their abundance inthe reactor is probably linked to the acidic conditions inside the biofilmand to their broader tolerance for low pH values concomitant with MEKdegradation. In the reactor, a maximum volumetric degradation rate of 3.5 kgMEK/m3 reactor·d was obtained for arelative removal efficiency of 35%, whereas the latter was maintainedat 70% for more modest applied loadings of 1.5 kgMEK/m3 reactor ·d. In liquid batchcultures, a biomass originating from the biofilm was able to degrade 0.40gMEK/gDCW·h at the optimal pH of 7. Aregular cycle of detachment-recolonization was observed during the operationof the bioreactor. The maximal degradation activity was obtained with a thinbiofilm and was not increased as the biofilm grew in thickness. The overalldegradation rate of the process did not appear to be limited by thediffusion of oxygen inside the biofilm. Over short periods of time, the MEKtransfer from the gaseous phase to the biofilm was neither affected by thepresence of the mist nor by the wetting of the biofilm. A better control ofthe biofilm pH led to improved performance in terms of removal rate but notin terms of relative elimination efficiency.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...