ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 10 (1992), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Metabasaltic rocks in the Klamath Mountains of California with ‘komatiitic’ major element concentrations were investigated in order to elucidate the origin of the magnesian signature. Trace-element concentrations preserve relict igneous trends and suggest that the rocks are not komatitic basalts, but immature arc rocks and within-plate alkalic lavas. Correlation of ‘excess’ MgO with the volume per cent hornblende (±clinopyroxene) suggests that the presence of cumulus phases contributes to the MgO-rich compositions. Early submarine alteration produced regional δ18O values of +10±1.5%° and shifts in Al2O3, Na2O, and K2O concentrations. Regional metamorphic grade in the study area varies from biotite-zone greenschist facies (350–550°C, c. 3 kbar) southward to prehnite–actinolite facies (200–400°C, ≤3 kbar), but little isotopic or elemental change occurred during the regional recrystallization. The greenschist facies assemblage is actinolitic hornblende + phengite + epidote + sodic plagioclase + microcline + chlorite + titanite + hematite + quartz in Ti-poor metabasaltic rocks; in addition to these phases biotite is present in Ti-rich analogues. Lower grade greenstones contain prehnite and more nearly stoichiometric actinolite. The moderate to low pressures of regional metamorphism are compatible with P–T conditions in a magmatic arc. Later contact metamorphism at 2–2.9±0.5 kbar and at peak temperatures approaching 600° C around the English Peak and Russian Peak granodiorites produced 3–4–km-wide aureoles typified by gradual, systematic increases in the pargasite content of amphibole, muscovite content of potassic white mica, and anorthite content of plagioclase compositions. Metasomatism during contact metamorphism produced further increases in bulk-rock δ18OSMOW of as much as +6%°. Thus, the unusually MgO-rich nature of the Sawyers Bar rocks may be attributed at least partly to metasomatism and the presence of magnesian cumulus phases.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of metamorphic geology 22 (2004), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Thermobarometry suggests that ultrahigh-pressure (UHP) to high-pressure (HP) rocks across the Western Gneiss Region ponded at the Moho following as much as 100 km of exhumation through the mantle and before exhumation to the upper crust. Eclogite across the c. 22 000 km2 study area records minimum pressures of c. 8–18 kbar and temperatures of c. 650–780 °C. One orthopyroxene eclogite yields an UHP of c. 28.5 kbar, and evidence of former coesite has been found c. 50 km farther east than previously known. Despite this widespread evidence of UHP to HP, thermobarometry of metapelite and garnet amphibolite samples reveals a surprisingly uniform ‘supra-Barrovian’ amphibolite-facies overprint at c. 11 kbar and c. 650–750 °C across the entire area. Chemical zoning analysis suggests that garnet in these samples grew during heating and decompression, presumably during the amphibolite-facies event. These data indicate that the Norwegian UHP/HP province was exhumed from mantle depths of c. 150 km to lower crustal depths, where it stalled and underwent a profound high-temperature overprint. The ubiquity of late-stage supra-Barrovian metamorphic overprints suggests that large-scale, collisional UHP terranes routinely stall at the continental Moho where diminishing body forces are exceeded by boundary forces. Significant portions of the middle or lower crust worldwide may be formed from UHP terranes that were arrested at the Moho and never underwent their final stage of exhumation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of metamorphic geology 21 (2003), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The Solund–Hyllestad–Lavik area affords an excellent opportunity to understand the ultrahigh-pressure Scandian orogeny because it contains a near-complete record of ophiolite emplacement, high-pressure metamorphism and large-scale extension. In this area, the Upper Allochthon was intruded by thec. 434 Ma Sogneskollen granodiorite and thrust eastward over the Middle/Lower Allochthon, probably in the Wenlockian. The Middle/Lower Allochthon was subducted to c. 50 km depth and the structurally lower Western Gneiss Complex was subducted to eclogite facies conditions at c. 80 km depth by c. 410–400 Ma. Within 〈 5–10 Myr, all these units were exhumed by the Nordfjord–Sogn detachment zone, producing shear strains 〉 100. Exhumation to upper crustal levels was complete by c. 403 Ma. The Solund fault produced the last few km of tectonic exhumation, bringing the near-ultrahigh-pressure rocks to within c. 3 km vertical distance from the low-grade Solund Conglomerate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: New eclogite localities and new 40Ar/39Ar ages within the Western Gneiss Region of Norway define three discrete ultrahigh-pressure (UHP) domains that are separated by distinctly lower pressure, eclogite facies rocks. The sizes of the UHP domains range from c. 2500 to 100 km2; if the UHP culminations are part of a continuous sheet at depth, the Western Gneiss Region UHP terrane has minimum dimensions of c. 165 × 50 × 5 km. 40Ar/39Ar mica and K-feldspar ages show that this outcrop pattern is the result of gentle regional-scale folding younger than 380 Ma, and possibly 335 Ma. The UHP and intervening high-pressure (HP) domains are composed of eclogite-bearing orthogneiss basement overlain by eclogite-bearing allochthons. The allochthons are dominated by garnet amphibolite and pelitic schist with minor quartzite, carbonate, calc-silicate, peridotite, and eclogite. Sm/Nd core and rim ages of 992 and 894 Ma from a 15-cm garnet indicate local preservation of Precambrian metamorphism within the allochthons. Metapelites within the allochthons indicate near-isothermal decompression following (U)HP metamorphism: they record upper amphibolite facies recrystallization at 12–17 kbar and c. 750 °C during exhumation from mantle depths, followed by a low-pressure sillimanite + cordierite overprint at c. 5 kbar and c. 750 °C. New 40Ar/39Ar hornblende ages of 402 Ma document that this decompression from eclogite-facies conditions at 410–405 Ma to mid-crustal depths occurred in a few million years. The short timescale and consistently high temperatures imply adiabatic exhumation of a UHP body with minimum dimensions of 20–30 km. 40Ar/39Ar muscovite ages of 397–380 Ma show that this extreme heat advection was followed by rapid cooling (c. 30 °C Myr−1), perhaps because of continued tectonic unroofing.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2007
    Keywords: TF IV ; Task Force IV ; Ultra-Deep Continental Crust Subduction (UDCCS)
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-06-13
    Description: Monazite laser ablation–split-stream inductively coupled plasma–mass spectrometry (LASS) was used to date monazite in situ in Barrovian-type micaschists of the Moravian zone in the Thaya window, Bohemian Massif. Petrography and garnet zoning combined with pseudosection modelling show that rocks from staurolite–chlorite, staurolite, kyanite and kyanite–sillimanite zones record burial in the S 1 fabric under a moderate geothermal gradient from 4–4·5 kbar and ~530–540°C to 5 kbar and 570°C, 6–7 kbar and 600–640°C, 7·5–8 kbar and 630–650°C, and 8 kbar and 650°C, respectively. In the kyanite and kyanite–sillimanite zones, garnet rim chemistry and local syntectonic replacement of garnet by sillimanite–biotite aggregates point to re-equilibration at 5·5–6 kbar and 630–650°C in the S 2 fabric. Heterogeneously developed retrograde shear zones (S 3 ) are marked by widespread chloritization, but minor chlorite is present in the studied samples. Monazite abundance and size increase with metamorphic grade from 5 µm in the staurolite–chlorite zone to 〉100 µm in the kyanite and kyanite–sillimanite zones. Irrespective of the monazite-forming reaction, this is interpreted as the onset of limited prograde monazite growth at staurolite grade, and continued prograde monazite growth after the kyanite-in reaction, compatible with conditions of about 5·5 kbar and 570°C and 7·5 kbar and 630°C from pseudosection modelling. Monazite is zoned, showing embayments and sharp boundaries between zones, with low Y in the staurolite zone, high-Y cores and low-Y rims in the kyanite zone, and high-Y cores, a low-Y mantle and a high-Y rim in the sillimanite zone. The 207 Pb-corrected 238 U/ 206 Pb ages from three samples range from 344 ± 7 to 330 ± 7 Ma, irrespective of metamorphic grade. The dates from monazite inclusions are interpreted as the ages of the staurolite- and kyanite-in reactions along the prograde path at 340 and 337 ± 7 Ma, respectively. The monazite in the matrix (and some inclusions) is interpreted as dating the prograde crystallization at (340–337) ± 7 Ma within the S 1 fabric, and then being affected by recrystallization at or down to 332 ± 7 Ma in the S 2 and S 3 fabrics. The two groups of data, for 340–337 and 332 Ma, are significantly different when only their in-run uncertainties (±1–3 Myr) are compared and indicate a 9 ± 3 Myr period of monazite (re)crystallization. A systematic increase in heavy rare earth element (HREE) content with decreasing monazite age from 344 to 335 Ma is correlated with growth on the prograde P–T path; the drop in HREE of monazite at 335–328 Ma is assigned to recrystallization. The presence of chlorite even in the least retrogressed samples witnesses limited external fluid availability on the retrograde P–T path. Migration of this fluid was probably responsible for heterogeneous fluid-assisted recrystallization and resetting of original prograde monazite, even where included in garnet, staurolite or kyanite. It is suggested that the rocks passed the chlorite-in reaction on the retrograde path at 332 ± 7 Ma. The timing of burial in the Thaya window, a deformed part of the underthrust Brunia microcontinent, was coeval with exhumation of granulites and migmatites of the Moldanubian orogenic root at c. 340 Ma.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-09-24
    Description: Gneiss domes in the Pamir (Central Asia) and the Himalaya provide key data on mid- to deep-crustal processes operating during the India-Asia collision. Laser ablation split-stream inductively coupled plasma–mass spectrometry (LASS-ICP-MS) data from monazite in these domes yield a time record from U/Th-Pb dates and a petrologic record from rare earth element (REE) abundances. Seven samples from the Pamir and six samples from the north Himalayan gneiss domes yield almost identical monazite dates of ca. 28–15 Ma. Most monazite has invariant heavy REE (HREE) abundances; two samples, however, have older monazite that records progressive HREE depletion and two samples have younger monazite that records progressive HREE enrichment. These variations in HREE are compatible with increasing garnet abundance—prograde metamorphism—until ca. 20 Ma, and decreasing garnet abundance thereafter. The change from HREE depletion to enrichment may record a transition from crustal thickening and heating to dome exhumation and cooling. This documentation of synchronous Barrovian metamorphism within domes of Indian crust along the margin of the orogen (Himalaya) and within domes of Asian crust within the core of the orogen (Pamir) is best explained by a plate-scale driving force rather than by local events. We propose that widespread, synchronous thickening was initiated by the resumption of Indian subduction following slab breakoff and then terminated by a second slab-tearing event—both plate-scale events inferred from tomography.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-05-29
    Description: The exhumed Fiordland sector of Zealandia offers a deep-crustal view into the life cycle of a Cordilleran-type orogen from final magmatic construction to extensional orogenic collapse. We integrate U-Pb thermochronologic data from metamorphic zircon and titanite with structural observations from 〉2000 km 2 of central Fiordland to document the tempo and thermal evolution of the lower crust during the tectonic transition from arc construction and crustal thickening to crustal thinning and extensional collapse. Data reveal that garnet granulite facies metamorphism and partial melting in the lower crust partially overlapped with crustal thickening and batholith construction during emplacement of the Western Fiordland Orthogneiss (WFO) from 118 to 115 Ma. Metamorphic zircons in metasedimentary rocks yield 206 Pb/ 238 U (sensitive high-resolution ion microprobe–reverse geometry) dates of 116.3–112.0 Ma. Titanite laser ablation split stream inductively coupled plasma–mass spectrometry chronology from the same rocks yielded complex results, with relict Paleozoic 206 Pb/ 238 U dates preserved at the margins of the WFO. Within extensional shear zones that developed in the thermal aureole of the WFO, titanite dates range from 116.2 to 107.6 Ma and have zirconium-in-titanite temperatures of ~900–750 °C. A minor population of metamorphic zircon rims and titanites in the Doubtful Sound region yield younger dates of 105.6–102.3 Ma with corresponding temperatures of 740–730 °C. Many samples record Cretaceous overdispersed dates with 5–10 m.y. ranges. Core-rim traverses and grain maps show complex chemical and temporal variations that cannot easily be attributed to thermally activated volume diffusion or simple core-rim crystallization. We interpret these Cretaceous titanites not as cooling ages, but rather as recording protracted growth and/or crystallization or recrystallization in response to fluid flow, deformation, and/or metamorphic reactions during the transition from garnet granulite to upper amphibolite facies metamorphism. We propose a thermotectonic model that integrates our results with structural observations. Our data reveal a clear tectonic break at 108–106 Ma that marks a change in processes deep within the arc. Prior to this break, arc construction processes dominated and involved (1) emplacement of mafic to intermediate magmas of the Malaspina and Misty plutons from 118 to 115 Ma, (2) contractional deformation at the roof of the Misty pluton in the Caswell Sound fold-thrust belt from 117 to 113 Ma, and (3) eclogite to garnet granulite facies metamorphism and partial melting over 〉8 m.y. from 116 to 108 Ma. These processes were accompanied by complex patterns of lower crustal flow involving both horizontal and vertical displacements. After this interval, extensional orogenic collapse initiated along upper amphibolite facies shear zones in the Doubtful Sound shear zone at 108–106 Ma. Zircon and titanite growth and/or crystallization or recrystallization at this time clearly link upper amphibolite facies metamorphism to mylonitic fabrics in shear zones. Our observations are significant in that they reveal the persistence of a hot and weak lower crust for ≥15 m.y. following arc magmatism in central Fiordland. We propose that the existence of a thermally weakened lower crust within the Median Batholith was a key factor in controlling the transition from crustal thickening to crustal thinning and extensional orogenic collapse of the Zealandia Cordillera.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-06-16
    Description: : The Nordfjord region of western Norway hosts an archetypal subducted crustal section, underpinned by ultrahigh-pressure (UHP) eclogite, overlain by Devonian sediments, and cored by a crustal-scale extensional shear zone. Structural mapping reveals two distinct displacement zones that played different roles during the formation and exhumation of this section: (1) the Sandane Shear Zone is a NW-dipping, amphibolite-facies, high-strain zone near the base of the eclogite-bearing crust that separates allochthonous units from underlying crystalline basement; it may have originated during early thrusting, but was overprinted by top-to-the-west extensional fabrics at lower crustal depths; (2) structurally above this, the Nordfjord–Sogn Detachment Zone is a top-to-the-west, amphibolite- to greenschist-facies detachment shear zone within allochthonous units that defines the upper boundary of the eclogitized crust and was responsible for exhumation through at least mid-crustal depths. Muscovite 40 Ar/ 39 Ar ages suggest that amphibolite-facies deformation below the Nordfjord–Sogn Detachment was mostly finished by c . 397 Ma, whereas muscovite ages from the deeper parts of the UHP domain indicate that it cooled after 390 Ma. During exhumation through the middle crust, west-directed stretching was accompanied by north–south folding. Late sinistral transpressional faulting in the middle to upper crust truncated the earlier folds and shear zones. Supplementary material: Complete 40 Ar/ 39 Ar data and a summary geological map of the Nordfjord region are available at http://www.geolsoc.org.uk/SUP18460 .
    Print ISSN: 0016-7649
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-10-09
    Description: Crystal preferred orientations were measured in a suite of rocks from three locations in the Basin and Range using electron-backscatter diffraction. Anisotropic velocities were calculated for all rocks using single-crystal stiffnesses, the Christoffel equation and Voigt–Reuss–Hill averaging. Anisotropic velocities were calculated for all three crustal sections using these values combined with rock proportions as exposed in the field. One suite of rocks previously measured in the laboratory was used as a benchmark to evaluate the accuracy of the calculated velocities. Differences in the seismic anisotropy of the Funeral Mountains, Ruby Mountains and East Humboldt Range sections arise because of differences in mineralogy and strain, with the calc-silicate dominated Ruby Mountains section having higher P -wave speeds and V P / V S ratios because of the reduced quartz content. In all cases, the velocities show either transverse isotropy or nearly so, with a unique slow axis normal to the foliation. Velocity anisotropy can thus be used to infer the flow plane, but not the flow direction in typical crustal rocks. Areas with a subhorizontal foliation have minimal shear wave splitting for vertically propagating waves and are thus good places to measure mantle anisotropy using SKS-splitting.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...