ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 101 (1989), S. 326-338 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The saturation surface of pseudobrookite (Fe2TiO5) was determined for melts in the system SiO2-Al2O3-K2O-FeO-Fe2O3-TiO2 at 1400° C and 1 atm. The variation in concentrations of Fe2O3, TiO2 and Fe2TiO5 in liquids can be used to infer relative changes in activity coefficients of these components with changing K2O/(K2O+Al2O3) of the melts. Saturation concentrations of these components are low and relatively constant in the peraluminous melts and increase with increasing K2O/(K2O+Al2O3) in peralkaline liquids. The activity coefficients of Fe2O3 and TiO2 and Fe2TiO5, therefore, are higher in peraluminous liquids than in peralkaline liquids in this system. In addition, the iron redox ratio was measured as a function of K2O/(K2O+Al2O3) for liquids just below the saturation surface; $$f_{{\text{O}}_{\text{2}} }$$ was fixed so all variations in redox ratio are entirely due to changes in melt composition. The redox ratio from unsaturated liquids was applied to saturated liquids where redox analysis of the glass is impossible. The homogeneous equilibrium experiments indicate that the activity coefficient of Fe2O3 relative to that of FeO is significantly greater in peraluminous melts than peralkaline melts. Both the heterogeneous and homogeneous equilibria suggest that in peralkaline liquids K+in excess of that required to charge balance tetrahedral Al+3 is used to stabilize both Fe+3 and Ti+4. Calculations show that ferric iron and titanium compete equally effectively for charge-balancing potassium but neither can outcompete aluminum. The observed changes in solution properties of Fe2O3 and TiO2 in the synthetic melts are used to explain variations in Fe-Ti oxide stabilities in natural peraluminous and peralkaline rhyolites and granites. Since the activity coefficients of both ferric iron and titanium are significantly higher in peraluminous liquids than in peralkaline liquids, Fe-Ti oxides should occur earlier in the crystallization sequence in peraluminous rhyolites than in peralkaline rhyolites. In addition, iron will be reduced in peraluminous granites and rhyolites relative to peralkaline ones under comparable P, T, and $$f_{{\text{O}}_{\text{2}} }$$ . Finally, observed crystallization patterns for minerals containing highly charged cations other than ferric iron and titanium are evaluated in the context of this and other experimental studies.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 113 (1993), S. 424-435 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The redox ratio of iron is used as an indicator of solution properties of silicate liquids in the system (SiO−Al2O3−K2O−FeO−Fe2O3−P2O5). Glasses containing 80–85 mol% SiO2 with 1 mol% Fe2O3 and compositions covering a range of K2O/Al2O3 were synthesized at 1400°C in air (fixed fO2). Variations in the ratio FeO/FeO1.5 resulting from the addition of P2O5 are used to determine the solution behavior of phosphorus and its interactions with other cations in the silicate melt. In 80 mol% SiO2 peralkaline melts the redox ratio, expressed as FeO/FeO1.5, is unchanged relative to the reference curve with the addition of 3 mol% P2O5. Yet, the iron redox ratio in the 85 mol% SiO2 potassium aluminosilicate melts is decreased relative to phosphorus-free liquids even for small amounts of P2O5 (0.5 mol%). The redox ratio in peraluminous melts is decreased relative to phosphorus- free liquids at P2O5 concentrations of 3 mol%. In peraluminous liquids, complexing of both Fe+3−O−P+5 and Al+3−O−P+5 occur. The activity coefficient of Fe+3 is decreased because more ferric iron can be accommodated than in phosphorus-free liquids. In peralkaline melts, there is no evidence that P+5 is removing K+ from either Al+3 or Fe+3 species. In chargebalanced melts with 3 mol% Fe2O3 and very high P2O5 concentrations, phosphorus removes K+ from K−O−Fe+3 complexes resulting in a redox increase. P2O5 should be accommodated easily in peraluminous rhyolitic liquids and phosphate saturation may be suppressed relative to metaluminous rhyolites. In peralkaline melts, phosphate solubility may increase as a result of phosphorus complexing with alkalis. The complexing stoichiometry may be variable, however, and the relative influence of peralkalinity versus temperature on phosphate solubility in rhyolitic melts deserves greater attention.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1993-03-01
    Print ISSN: 0010-7999
    Electronic ISSN: 1432-0967
    Topics: Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1989-03-01
    Print ISSN: 0010-7999
    Electronic ISSN: 1432-0967
    Topics: Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...