ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2019-11-27
    Description: The effects of microgravity, and social isolation on the CNS are poorly understood. We hypothesize that mitochondrial reactive oxygen species (ROS) play an important role in this process. Since mice are social animals, our lab developed a novel social model of hindlimb unloading (HU), enabling us to determine the effects of both social isolation and simulated microgravity. Responses to 30d of HU were compared in wildtype or transgenic MCAT mice who over-express human catalase in mitochondria. Abundance of 4-Hydroxynonenal, Park7 (a redox-sensitive chaperone and sensor of oxidative stress) and corticosterone were measured by ELISA. Cytokines related to inflammation in the hippocampus and in plasma were analyzed by a protein array. Behavioral data was collected over a 24-hour period.Socially housed HU mice were more active and conducted at least two times more exploratory activities, compared to normally loaded mice. Correlation analysis revealed that specific brain and plasma cytokines correspond with specific behaviors. Simulated microgravity and/or social isolation caused changes in cytokine patterns in the hippocampus and in plasma, with significant interaction effects of HU and genotype in expression levels of five cytokines (out of 35). Interestingly, elevation of these generally pro-inflammatory cytokines by HU in WT mice was mitigated in MCAT mice, suggesting a role for mitochondrial ROS signaling in inflammatory CNS responses to microgravity. Interestingly, socially housed mice had also lower level of 4HNE and higher level of Park7 in the hippocampus compared to singly housed animals. The cytokine responses to social isolation were more extensive in brain vs plasma. Further, there was no overlap in the cytokine repertoire regulated in response to microgravity versus, isolation suggesting divergent mechanisms or downstream signaling. These findings implicate a potentially important role for mitochondrial ROS in CNS responses to the challenges posed both by prolonged missions in space and bedrest on Earth
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN75614 , American Society for Gravitational and Space Research (ASGSR); Nov 20, 2019 - Nov 23, 2019; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...