ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1432
    Keywords: Key words: Signature sequence — Cyanobacteria —Deinococcus-Thermus— Prokaryote phylogeny
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. A number of proteins have been identified that contain prominent sequence signatures that are uniquely shared by the members of the Deinococcus-Thermus genera and the cyanobacterial species but which are not found in any of the other eubacterial or archaebacterial homologs. The proteins containing such sequence signatures include (1) the DnaJ/Hsp40 family of proteins, (2) DNA polymerase I, (3) the protein synthesis elongation factor EF-Tu, and (4) the elongation factor EF-Ts. A strong affinity of the Deinococcus-Thermus species to cyanobacteria is also seen in the phylogenetic trees based on Hsp70 and DnaJ sequences. These results provide strong evidence of a close and specific evolutionary relationship between species belonging to these two eubacterial divisions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1432
    Keywords: Key words: Heat shock proteins — Archaebacterium — Polyphyletic branching — Gram-positive bacteria
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. The genes encoding for heat shock protein 40 (Hsp40 or DnaJ) homologs were cloned and sequenced from the archaebacterium Halobacterium cutirubrum and the eubacterium Deinococcus proteolyticus to add to sequences from the gene banks. These genes were identified downstream of the Hsp70 (or DnaK) genes in genomic fragments spanning this region and, as in other prokaryotic species, Hsp70-Hsp40 genes are likely part of the same operon. The Hsp40 homolog from D. proteolyticus was found to be lacking a central 204 base pair region present in H. cutirubrum that encodes for the four cysteine-rich domains of the repeat consensus sequence CxxCxGxG (where x is any amino acid), present in most Hsp40 homologs. The available sequences from various archaebacteria, eubacteria, and eukaryotes show that the same deletion is also present in the homologs from Thermus aquaticus and two cyanobacteria, but in no other species tested. This unique deletion and the clustering of homologs from the Deinococcus–Thermus group and cyanobacterial species in the Hsp40 phylogenetic trees suggest a close evolutionary relationship between these groups as was also shown recently for Hsp70 sequences (R.S. Gupta et al., J Bacteriol 179:345–357, 1997). Sequence comparisons indicate that the Hsp40 homologs are not as conserved as the Hsp70 sequences. Phylogenetic analysis provides no reliable information concerning evolutionary relationship between prokaryotes and eukaryotes and their usefulness in this regard is limited. However, in phylogenetic trees based on Hsp40 sequences, the two archaebacterial homologs showed a polyphyletic branching within Gram-positive bacteria, similar to that seen with Hsp70 sequences.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular evolution 37 (1993), S. 573-582 
    ISSN: 1432-1432
    Keywords: Heat shock protein HSP70 ; Phylogeny ; Archaebacteria ; Eubacteria ; Eukaryotes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The 70-kDa heat-shock protein (HSP70) constitutes the most conserved protein present in all organisms that is known to date. Based on global alignment of HSP70 sequences from organisms representing all three domains, numerous sequence signatures that are specific for prokaryotic and eukaryotic homologs have been identified. HSP70s from the two archaebacterial species examined (viz., Halobacterium marismortui and Methanosarcina mazei) have been found to contain all eubacterial but no eukaryotic signature sequences. Based on several novel features of the HSP70 family of proteins (viz., presence of tandem repeats of a 9-amino-acid [a.a.] polypeptide sequence and structural similarity between the first and second quadrants of HSP70, homology of the N-terminal half of HSP70 to the bacterial MreB protein, presence of a conserved insert of 23–27 a.a. in all HSP70s except those from archaebacteria and gram-positive eubacteria) a model for the evolution of HSP70 gene from an early stage is proposed. The HSP70 homologs from archaebacteria and gram-positive bacteria lacking the insert in the N-terminal quadrants are indicated to be the ancestral form of the protein. Detailed phylogenetic analyses of HSP70 sequence data (viz., by bootstrap analyses, maximum parsimony, and maximum likelihood methods) provide evidence that archaebacteria are not monophyletic and show a close evolutionary linkage with the gram-positive eubacteria. These results do not support the traditional archaebacterial tree, where a close relationship between archaebacterial and eukaryotic homologs is observed. To explain the phylogenies based on HSP70 and other gene sequences, a model for the origin of eukaryotic cells involving fusion between archaebacteria and gram-negative eubacteria is proposed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular evolution 39 (1994), S. 537-540 
    ISSN: 1432-1432
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Molecular microbiology 15 (1995), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The members of the 10 kDa and 60 kDa heat-shock chaperonin proteins (Hsp10 and Hsp60 or Cpn10 and Cpn60), which form an operon in bacteria, are present in all eubacteria and eukaryotic ceil organelles such as mitochondria and chloroplasts. In archaebacteria and eukaryotic cell cytosol, no close homologues of Hsp10 or Hsp60 have been identified. However, these species (or ceil compartments) contain the Tcp-1 family of proteins (distant homologues of Hsp60). Phylogenetic analysis based on global alignments of Hsp60 and Hsp10 sequences presented here provide some evidence regarding the evolution of mitochondria from a member of the α-subdivision of Gram-negative bacteria and chloroplasts from cyanobacterial species, respectively. This inference is strengthened by the presence of sequence signatures that are uniquely shared between Hsp60 homologues from α-purple bacteria and mitochondria on one hand, and the chloroplasts and cyanobacterial hsp60s on the other. Within the α-purple subdivision, species such as Rickettsia and Ehrlichia, which live intracellularly within eukaryotic cells, are indicated to be the closest relatives of mitochondrial Homologues, In the Hsp60 evolutionary tree, rooted using the Tcp-1 homologue, the order of branching of the major groups was as follows: Gram-positive bacteria — cyanobacteria and chloroplasts — chlamydiae and spirochaetes —β and γ-Gram-negative purple bacteria —α-purple bacteria — mitochondria. A similar branching order was observed independently in the Hsp10 tree. Multiple Hsp60 homologues, when present in a group of species, were found to be clustered together in the trees, indicating that they evolved by independent gene-duplication events. This review also considers in detail the evolutionary relationship between Hsp50 and Tcp-1 families of proteins based on two different models (viz. archaebacterial and chimeric) for the origin of eukaryotic cell nucleus. Some predictions of the chimeric model are also discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford BSL : Blackwell Science Ltd, UK
    Molecular microbiology 29 (1998), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The evolutionary relationship within prokaryotes is examined based on signature sequences (defined as conserved inserts or deletions shared by specific taxa) and phylogenies derived from different proteins. Archaebacteria are indicated as being monophyletic by a number of proteins related to the information transfer processes. In contrast, for several other highly conserved proteins, common signature sequences are present in archaebacteria and Gram-positive bacteria, whereas Gram-negative bacteria are indicated as being distinct. For these proteins, archaebacteria do not form a phylogenetically distinct clade but show polyphyletic branching within Gram-positive bacteria. A closer relationship of archaebacteria to Gram-positive bacteria in comparison with Gram-negative bacteria is generally seen for the majority of the available gene/protein sequences. To account for these results and the fact that both archaebacteria and Gram-positive bacteria are prokaryotes surrounded by a single cell membrane, I propose that the primary division within prokaryotes is between monoderm prokaryotes (surrounded by a single membrane) and diderm prokaryotes (i.e. all true Gram-negative bacteria containing both an inner cytoplasmic membrane and an outer membrane). This proposal is consistent with both cell morphology and signature sequences in different proteins. The monophyletic nature of archaebacteria for some genes, and their polyphyletic branching within Gram-positive bacteria as suggested by others, is critically examined, and several explanations, including derivation of archaebacteria from Gram-positive bacteria in response to antibiotic selection pressure, are proposed. Signature sequences in proteins also indicate that the low-G + C Gram-positive bacteria are phylogenetically distinct from the high-G + C Gram-positive group and that the diderm prokaryotes (i.e. Gram-negative bacteria) appear to have evolved from the latter group. Protein phylogenies and signature sequences also show that all eukaryotic cells have received significant gene contributions from both an archaebacterium and a Gram-negative eubacterium. Thus, the hypothesis that archaebacteria and eukaryotes shared a common ancestor exclusive of eubacteria is not supported. These observations provide evidence for an alternate view of the evolutionary relationship among living organisms that is different from the currently popular three-domain proposal.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    The @journal of eukaryotic microbiology 41 (1994), S. 0 
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Giardia lamblia trophozoites contain acetylated α-tubulin but lack detectable levels of tyrosinolated α-tubulin, as demonstrated in immunoblots with monoclonal antibodies specific for these tubulin forms. By immunofluorescence microscopy, acetylated α-tubulin is localized in axonemes, median bodies and in the adhesive disk. Post-embeddment immunogold labeling of thin sections of cells was used to evaluate acetylation at the level of individual microtubules by electron microscopy. Cells were fixed with glutaraldehyde and embedded in the acrylic resin LR Gold. Results indicate all microtubules in adhesive disk, axonemes, basal bodies, funis and the median bodies contain acetylated α-tubulin. Unlike immunofluorescence labeling, all microtubules of the adhesive disk and the funis could be gold labeled. No nonspecific labeling of the cytoplasm or of structures other than microtubules was observed. Acetylated microtubules in G. lamblia do not appear to be a subset of microtubules and acetylation appears uniform along the entire length of individual microtubules. Acetylation and the tyrosinolation state of microtubules in Giardia are discussed in the context of microtubule stability and crosslinked features of the cytoskeleton.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 466 (1986), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology reviews 24 (2000), S. 0 
    ISSN: 1574-6976
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The evolutionary relationships of proteobacteria, which comprise the largest and phenotypically most diverse division among prokaryotes, are examined based on the analyses of available molecular sequence data. Sequence alignments of different proteins have led to the identification of numerous conserved inserts and deletions (referred to as signature sequences), which either are unique characteristics of various proteobacterial species or are shared by only members from certain subdivisions of proteobacteria. These signature sequences provide molecular means to define the proteobacterial phyla and their various subdivisions and to understand their evolutionary relationships to the other groups of eubacteria as well as the eukaryotes. Based on signature sequences that are present in different proteins it is now possible to infer that the various eubacterial phyla evolved from a common ancestor in the following order: low-G+C Gram-positive⇒high-G+C Gram-positive⇒Deinococcus-Thermus (green nonsulfur bacteria)⇒cyanobacteria⇒Spirochetes⇒Chlamydia-Cytophaga-Aquifex-green sulfur bacteria⇒Proteobacteria-1 (? and δ)⇒Proteobacteria-2 (α)⇒Proteobacteria-3 (β)⇒Proteobacteria-4 (γ). An unexpected but important aspect of the relationship deduced here is that the main eubacterial phyla are related to each other linearly rather than in a tree-like manner, suggesting that the major evolutionary changes within Bacteria have taken place in a directional manner. The identified signatures permit placement of prokaryotes into different groups/divisions and could be used for determinative purposes. These signatures generally support the origin of mitochondria from an α-proteobacterium and provide evidence that the nuclear cytosolic homologs of many genes are also derived from proteobacteria.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...