ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 31 (1992), S. 4696-4704 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 16 (1977), S. 4217-4225 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1432
    Keywords: Key words: COX — Primates — Nonsynonymous substitutions — Synonymous substitutions — Rates — Positive selection
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. Cytochrome c oxidase (COX) is a multi-subunit enzyme complex that catalyzes the final step of electron transfer through the respiratory chain on the mitochondrial inner membrane. Up to 13 subunits encoded by both the mitochondrial (subunits I, II, and III) and nuclear genomes occur in eukaryotic organisms ranging from yeast to human. Previously, we observed a high number of amino acid replacements in the human COX IV subunit compared to mouse, rat, and cow orthologues. Here we examined COX IV evolution in the two groups of anthropoid primates, the catarrhines (hominoids, cercopithecoids) and platyrrhines (ceboids), as well as one prosimian primate (lorisiform), by sequencing PCR-amplified portions of functional COX4 genes from genomic DNAs. Phylogenetic analysis of the COX4 sequence data revealed that accelerated nonsynonymous substitution rates were evident in the early evolution of both catarrhines and, to a lesser extent, platyrrhines. These accelerated rates were followed later by decelerated rates, suggesting that positive selection for adaptive amino acid replacement became purifying selection, preserving replacements that had occurred. The evidence for positive selection was especially pronounced along the catarrhine lineage to hominoids in which the nonsynonymous rate was first faster than the synonymous rate, then later much slower. The rates of three types of ``neutral DNA'' nucleotide substitutions (synonymous substitutions, pseudogene nucleotide substitutions, and intron nucleotide substitutions) are similar and are consistent with previous observations of a slower rate of such substitutions in the nuclear genomes of hominoids than in the nuclear genomes of other primate and mammalian lineages.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0983
    Keywords: Basidiomycotina ; Molecular evolution ; Transposition ; Length mutations ; Gene order
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We constructed restriction-site and gene maps for mitochondrial DNAs from seven isolates of five species of Suillus (Boletaceae, Basidiomycotina). Each mitochondrial genome exists as a single circular chromosome, ranging in size from 36 to 121 kb. Comparisons within species and between two closely related species revealed that insertions and deletions are the major form of genome change, whereas most restriction sites are conserved. Among more distantly related species, size and restriction-site differences were too great to allow precise alignments of maps, but small clusters of putatively homologous restriction sites were found. Two mitochondrial gene orders exist in the five species. These orders differ only by the relative positions of the genes for ATPase subunit 9 and the small ribosomal RNA and are interconvertible by a single transposition. One of the two gene arrangements is shared by four species whose mitochondrial DNAs span the entire size range of 36 to 121 kb. The conservation of gene order in molecules that vary over three-fold in size and share few restriction sites demonstrates a low frequency of rearrangements relative to insertions, deletions, and base substitutions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0983
    Keywords: Mitochondrial DNA ; Coprinus ; DNA-DNA reassociation ; Gene mapping
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The mitochondrial and nuclear genomes of Coprinus stercorarius and C. cinereus were compared to assess their evolutionary relatedness and to characterize at the molecular level changes that have occurred since they diverged from a common ancestor. The mitochondrial genome of C. stercorarius (91.1 kb) is approximately twice as large as that of C. cinereus (43.3 kb). The pattern of restriction enzyme recognition sites shows both genomes to be circular, but reveals no clear homologies; furthermore, the order of structural genes is different in each species. The C. stercorarius mitochondrial genome contains a region homologous to a probe derived from the yeast mitochondrial var1 gene, whereas its nuclear genome does not. By contrast, the C. cinereus nuclear, but not mitochondrial, genome contains a region homologous to the var1 probe. Only a small fraction of either the nuclear or mitochondrial genomes, perhaps corresponding to the coding sequences, is capable of forming duplexes in interspecies solution reassociations, as measured by binding to hydroxylapatite. Those sequences capable of reassociating were found to have approximately 15% divergence for the mitochondrial genomes and 7%–15% divergence for the nuclear genomes, depending on the conditions of reassociation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 202 (1986), S. 16-23 
    ISSN: 1617-4623
    Keywords: Achlya ; Mitochondrial DNA ; Inverted repeat ; Gene localization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Mitochondrial DNA from four strains of the oomycete Achlya has been compared and nine gene loci mapped, including that of the ribosomal protein gene, var1. Examination of the restriction enzyme site maps showed the presence of four insertions relative to a map common to all four strains. All the insertions were found in close proximity to genic regions. The four strains also cotained the inverted repeat first observed in A. ambisexualis (Hudspeth et al. 1983), allowing an examination by analysis of retained restriction sites of the evolutionary stability of repeated DNA sequences relative to single copy sequences. Although the inverted repeat is significantly more stable than single copy sequences, more detailed analysis indicated that this stability is limited to the portion encoding the ribosomal RNA genes. Thus, the apparent evolutionary stability of the repeat does not appear to derive from the inverted repeat structure per se.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    BioEssays 18 (1996), S. 983-991 
    ISSN: 0265-9247
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Mitochondria contain a molecular genetic system to express the 13 protein components of the electron transport system encoded in the mitochondrial genome (mtDNA). Defects in the function of this system result in some diaseases, many of which are multisystem disorders, prominently involving highly aerobic, postmitotic tissues. These defects can be caused by large-scale rearrangements of mtDNA, by point mutations, or by nuclear gene mutations resulting in abnormalities in mtDNA. Although any of these mutations would be expected to produce a similar clinical phenotype by compromising oxidative phosphorylation, the surprising and puzzling result is that different clinical phenotypes are generally associated with specific mtDNA mutations. Moreover, the same mutation can produce a distinct clinical phenotype in different individuals or pedigrees. MtDNA rearrangements are also found in aged individuals, but at a subclinical level, suggesting that normal and pathological processes can differ by the effect of genetic or environmental factors on the error rate of mtDNA replication.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Electrophoresis 19 (1998), S. 1254-1259 
    ISSN: 0173-0835
    Keywords: Gene promoters ; Cytochrome c oxidase ; Electrophoretic mobility shift ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: The cytochrome c oxidase (COX) holoenzyme is a 13-subunit complex that carries out the terminal step in the electron transport chain. Three of the subunits, which contain the electron transfer function, are coded by mitochondrial DNA and the other ten subunits by nuclear DNA. Since the holoenzyme contains equivalent amounts of each subunit, we and others have examined transcriptional regulation of COX nuclear subunits to explore whether there is a common basis for co-regulation. Each gene is seen to have a unique pattern of recognition by regulatory factors; although some factors bind to more than one gene, not all COX genes seem to be regulated by the same set of factors. Current information about the COX promoters that have been examined is summarized, and the relation of promoter regulation to coordinate gene expression is discussed.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 0192-253X
    Keywords: Mouse ; pre-implantation embryo ; cytochrome c oxidase ; antisense inhibition ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: It had not previously been known whether synthesis of nuclear-encoded mitochondrial subunits occurs in pre-implantation embryos. We have used cytoplasmic injections of antisense RNA transcribed in vitro to study this question. Capped, in vitro transcribed RNA antisense to either cytochrome coxidase subunit IV or VIIc injected into each cell at the two-cell stage markedly inhibited synthesis of adenine nucleotides by the 8- to 16-cell stage, whereas injection of the cognate sense RNAs gave levels similar to those previously published for normal embryos. These results strongly suggest that translation of nuclear-encoded mRNAs for mitochondrial subunits is required during pre-implantation development. It was of additional interest that, not only was ATP decreased, but ADP and AMP as well, with the effect that the charge ratio remained constant. The results also suggest, therefore, that the mechanism by which cells normally regulate their charge ratio, thought to be with adenylate deaminase, is already in place. © 1993Wiley-Liss, Inc.
    Additional Material: 2 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-1777
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. We identified a novel human gene, NOC4 (Neighbor Of COX4), located 5′ to COX4, the gene for cytochrome c oxidase subunit IV, on Chr16q32-ter. Transcripts from this gene were identified among human expressed sequence tags. A full-length, 1.06-kb human retinal NOC4 cDNA encoded a 24-kDa, 210-amino acid hypothetical protein of unknown function. Northern hybridization analysis of human RNAs from various tissues detected NOC4 transcripts of 2.2 and 1.4 kb in all tissues examined, suggesting that NOC4 expression is ubiquitous. Transcription of both the COX4 and NOC4 genes initiates within a 250-bp intergenic promoter and occurs in opposite directions. The bidirectional promoter is G + C-rich, lacks TATA and CCAAT elements, and contains multiple potential binding sites for Sp1 and NRF-2/GABP. Two of the NRF-2/GABP sites are located within 14-bp direct repeats, a conserved feature of mammalian COX4 promoters. The NOC4 and COX4 genes are also linked in the rat, mouse, and bovine genomes. A NOC4-GFP fusion protein is located in both the nucleus and the cytoplasm, including the mitochondria.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...