ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Cabaniss, Haley E; Gregg, Patricia M; Grosfils, Eric B (2018): The Role of Tectonic Stress in Triggering Large Silicic Caldera Eruptions. Geophysical Research Letters, 45(9), 3889-3895, https://doi.org/10.1029/2018GL077393
    Publication Date: 2023-01-13
    Description: Data presented are the results of numerical experiments to address the affect of tectonic stress on the mechanics of triggering caldera-forming volcanic eruptions.
    Type: Dataset
    Format: application/vnd.openxmlformats-officedocument.spreadsheetml.sheet, 72.8 kBytes
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Gregg, Patricia M; Le Mével, H; Zhan, Yan; Dufek, Josef; Geist, Dennis; Chadwick, William W Jr (2018): Stress Triggering of the 2005 Eruption of Sierra Negra Volcano, Galápagos. Geophysical Research Letters, 45(24), 13,288-13,297, https://doi.org/10.1029/2018GL080393
    Publication Date: 2023-01-13
    Description: The following files are model data generated by COMSOL Multiphysics 5.3. Our numerical approach utilizes previously developed and benchmarked, thermomechanical and fluid-structure interaction FEM models. COMSOL Multiphysics 5.3a calculates the stress, strain, and temperature variations due to a viscous magma flowing from a deeper source into an existing, magma-filled reservoir. Model rheology implantations include: non-Temperature-dependent, Temperature-dependent, and Temperature-dependent with pre-existing weakness. Model outputs includes: Time, vertical deformation, optimized flux, change in overpressure, maximum tensile stress, and temperature.
    Keywords: File format; File name; File size; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 28 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Albright, John A; Gregg, Patricia M; Lu, Zhong; Freymueller, Jeffrey T (2019): Hindcasting magma reservoir stability preceding the 2008 eruption of Okmok, Alaska. Geophysical Research Letters, https://doi.org/10.1029/2019GL083395
    Publication Date: 2023-01-30
    Description: EnKF data assimilation outputs in support of Albright et al. (2009) in Geophysical Research Letters. Contains the modeled reservoir parameters, projected surface deformation, reservoir wall tensile stress, and host rock Mohr-Coulomb failure at each iteration of the assimilation for 4 different versions that vary input data and rock rheology.
    Keywords: Data Assimilation; EnKF; Geodesy; MULT; Multiple investigations; Okmok; Volcanology
    Type: Dataset
    Format: application/zip, 950.8 kBytes
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 448 (2007), S. 183-187 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Mid-ocean ridge morphology and crustal accretion are known to depend on the spreading rate of the ridge. Slow-spreading mid-ocean-ridge segments exhibit significant crustal thinning towards transform and non-transform offsets, which is thought to arise from a three-dimensional process of ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): B11102, doi:10.1029/2008JB006100.
    Description: We examine mantle melting, fractional crystallization, and melt extraction beneath fast slipping, segmented oceanic transform fault systems. Three-dimensional mantle flow and thermal structures are calculated using a temperature-dependent rheology that incorporates a viscoplastic approximation for brittle deformation in the lithosphere. Thermal solutions are combined with the near-fractional, polybaric melting model of Kinzler and Grove (1992a, 1992b, 1993) to determine extents of melting, the shape of the melting regime, and major element melt composition. We investigate the mantle source region of intratransform spreading centers (ITSCs) using the melt migration approach of Sparks and Parmentier (1991) for two end-member pooling models: (1) a wide pooling region that incorporates all of the melt focused to the ITSC and (2) a narrow pooling region that assumes melt will not migrate across a transform fault or fracture zone. Assuming wide melt pooling, our model predictions can explain both the systematic crustal thickness excesses observed at intermediate and fast slipping transform faults as well as the deeper and lower extents of melting observed in the vicinity of several transform systems. Applying these techniques to the Siqueiros transform on the East Pacific Rise we find that both the viscoplastic rheology and wide melt pooling are required to explain the observed variations in gravity inferred crustal thickness. Finally, we show that mantle potential temperature Tp = 1350°C and fractional crystallization at depths of 9–15.5 km fit the majority of the major element geochemical data from the Siqueiros transform fault system.
    Description: This research was supported by WHOI Academic Programs Office (PMG), NSF grants OCE-0649103 and OCE-0623188 (MDB), and the Charles D. Hollister Endowed Fund for Support of Innovative Research at WHOI (J.L.).
    Keywords: Mid-ocean ridge ; Oceanic transform fault ; Siqueiros transform
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2008
    Description: Segmentation and crustal accretion at oceanic transform fault systems are investigated through a combination of geophysical data analysis and geodynamical and geochemical modeling. Chapter 1 examines the effect of fault segmentation on the maximum predicted earthquake magnitude of an oceanic transform fault system. Results of thermal modeling suggest that fault segmentation by intra-transform spreading centers (ITSC) drastically reduces the available brittle area of a transform fault and thus limits the available earthquake rupture area. Coulomb stress models suggest that long ITSCs will prohibit static stress interaction between segments of a transform system and further limit the maximum possible magnitude of a given transform fault earthquake. In Chapter 2, gravity anomalies from a global set of oceanic transform fault systems are investigated. Surprisingly, negative residual mantle Bouguer gravity anomalies are found within fastslipping transform fault domains. These gravity observations suggest a mass deficit within fast-slipping transform faults, which may result from porosity variations, mantle serpentinization, and/or crustal thickness variations. Two-dimensional forward modeling and the correlation of the negative gravity anomalies to bathymetric highs indicate crustal thickness excesses in these locations. Finally, in Chapter 3, mantle thermal and melting models for a visco-plastic rheology are developed to investigate the process of mantle melting and crustal accretion at ITSCs within segmented transform faults, and are applied to the Siqueiros transform fault system. Models in which melt migrates into the transform fault domain from a large region of the mantle best explain the gravity-derived crustal thickness variations observed at the Siqueiros transform. Furthermore, a mantle potential temperature of 1350ºC and fractional crystallization at depths of 9 – 15.5 km best explain the major element composition variation observed at the Siqueiros transform.
    Description: National Science Foundation Graduate Research Fellowship, Hollister Graduate Research Fellowship, WHOI Academic Programs Office – Research Fellowship
    Keywords: Geological modeling ; Earthquake magnitude
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-16
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Fabbrizzi, A., Parnell‐Turner, R., Gregg, P., Fornari, D., Perfit, M., Wanless, V., & Anderson, M. Relative timing of off‐axis volcanism from sediment thickness estimates on the 8°20’N seamount chain, East Pacific Rise. Geochemistry, Geophysics, Geosystems, 23(9), (2022): e2022GC010335, https://doi.org/10.1029/2022gc010335.
    Description: Volcanic seamount chains on the flanks of mid-ocean ridges record variability in magmatic processes associated with mantle melting over several millions of years. However, the relative timing of magmatism on individual seamounts along a chain can be difficult to estimate without in situ sampling and is further hampered by Ar40/Ar39 dating limitations. The 8°20’N seamount chain extends ∼170 km west from the fast-spreading East Pacific Rise (EPR), north of and parallel to the western Siqueiros fracture zone. Here, we use multibeam bathymetric data to investigate relationships between abyssal hill formation and seamount volcanism, transform fault slip, and tectonic rotation. Near-bottom compressed high-intensity radiated pulse, bathymetric, and sidescan sonar data collected with the autonomous underwater vehicle Sentry are used to test the hypothesis that seamount volcanism is age-progressive along the seamount chain. Although sediment on seamount flanks is likely to be reworked by gravitational mass-wasting and current activity, bathymetric relief and Sentry vehicle heading analysis suggest that sedimentary accumulations on seamount summits are likely to be relatively pristine. Sediment thickness on the seamounts' summits does not increase linearly with nominal crustal age, as would be predicted if seamounts were constructed proximal to the EPR axis and then aged as the lithosphere cooled and subsided away from the ridge. The thickest sediments are found at the center of the chain, implying the most ancient volcanism there, rather than on seamounts furthest from the EPR. The nonlinear sediment thickness along the 8°20’N seamounts suggests that volcanism can persist off-axis for several million years.
    Description: This work was supported by National Science Foundation awards OCE-1356610, OCE-1356822, OCE-1357150, OCE-1754419, OCE-1834797, OCE-2001314, and OCE-2001331.
    Keywords: Off-axis seamounts ; East Pacific Rise ; Sediment thickness ; Seafloor morphology ; Autonomous underwater vehicle ; Eruption history
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Anderson, M., Wanless, V. D., Perfit, M., Conrad, E., Gregg, P., Fornari, D., & Ridley, W. I. Extreme heterogeneity in mid-ocean ridge mantle revealed in lavas from the 8 degrees 20 ' N near-axis seamount chain. Geochemistry Geophysics Geosystems, 22(1), (2021): e2020GC009322, https://doi.org/10.1029/2020GC009322.
    Description: Lavas that have erupted at near‐axis seamounts provide windows into mid‐ocean ridge mantle heterogeneity and melting systematics which are not easily observed on‐axis at fast‐spreading centers. Beneath ridges, most heterogeneity is obscured as magmas aggregate toward the ridge, where they efficiently mix and homogenize during transit and within shallow magma chambers prior to eruption. To understand the deeper magmatic processes contributing to oceanic crustal formation, we examine the compositions of lavas erupted along a chain of near‐axis seamounts and volcanic ridges perpendicular to the East Pacific Rise. We assess the chemistry of near‐ridge mantle using a ∼200 km‐long chain at ∼8°20′N. High‐resolution bathymetric maps are used with geochemical analyses of ∼300 basalts to evaluate the petrogenesis of lavas and the heterogeneity of mantle feeding these near‐axis eruptions. Major and trace element concentrations and radiogenic isotope ratios are highly variable on 〈1 km scales, and reveal a continuum of depleted, normal, and enriched basalts spanning the full range of ridge and seamount compositions in the northeast Pacific. There is no systematic compositional variability along the chain. Modeling suggests that depleted mid‐ocean ridge basalt (DMORB) lavas are produced by ∼5%–15% melting of a depleted mid‐ocean ridge (MOR) mantle. Normal mid‐ocean ridge basalts (NMORB) form from 5% to 15% melting of a slightly enriched MOR mantle. Enriched mid‐ocean ridge basalts (EMORB) range from 〈1% melting of 10% enriched mantle to 〉15% melting of 100% enriched mantle. The presence of all three lava types along the seamount chain, and on a single seamount closest to the ridge axis, confirms that the sub‐ridge mantle is much more heterogeneous than is commonly observed on‐axis and heterogeneity exists over small spatial scales.
    Description: This work was supported by NSF OCE‐MGG 1356610 (Romano and Gregg), NSF OCE‐MGG 1356822 (Fornari), NSF OCE‐MGG 1357150 (Perfit), NSF OCE‐MGG 2001314 (Perfit and Wanless), the Burnham Research Grant at Boise State University, and the Graduate School Funding Fellowship at University of Florida.
    Keywords: East Pacific Rise ; Mantle heterogeneity ; Mantle melting ; Mid‐ocean ridge basalt ; Near‐axis seamounts ; Seamount volcanism
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-05-04
    Description: We utilize 3-D temperature-dependent viscoelastic finite element models to investigate the mechanical response of the host rock supporting large caldera-size magma reservoirs (volumes 〉102 km3) to local tectonic stresses. The mechanical stability of the host rock is used to determine the maximum predicted repose intervals and magma flux rates that systems may experience before successive eruption is triggered. Numerical results indicate that regional extension decreases the stability of the roof rock overlying a magma reservoir, thereby promoting early-onset caldera collapse. Alternatively, moderate amounts of compression (≤10 mm/year) on relatively short timescales (〈104 years) increases roof rock stability. In addition to quantifying the affect of tectonic stresses on reservoir stability, our models indicate that the process of rejuvenation and mechanical failure is likely to take place over short time periods of hundreds to thousands of years. These findings support the short preeruption melt accumulation timescales indicated by U series disequilibrium studies. ©2018. American Geophysical Union. All Rights Reserved.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-06-23
    Electronic ISSN: 2045-2322
    Topics: Natural Sciences in General
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...