ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2011-08-18
    Description: A vegetation gradient model, based on a new surface hydrologic index and NOAA/AVHRR meteorological satellite data, has been analyzed along a 1300 km east-west transect across the state of Texas. The model was developed to test the potential usefulness of such low-resolution data for vegetation stratification and monitoring. Normalized Difference values (ratio of AVHRR bands 1 and 2, considered to be an index of greenness) were determined and evaluated against climatological and vegetation characteristics at 50 sample locations (regular intervals of 0.25 deg longitude) along the transect on five days in 1980. Statistical treatment of the data indicate that a multivariate model incorporating satellite-measured spectral greenness values and a surface hydrologic factor offer promise as a new technique for regional-scale vegetation stratification and monitoring.
    Keywords: EARTH RESOURCES AND REMOTE SENSING
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-28
    Description: Net CO2 assimilation as a function of internal CO2 and stomatal conductance to water vapor were measured on blades of the C4 grasses Andropogon gerardii Vitman, Panicum virgatrum L., and Sorghastrum nutans (L.) Nash in northeast Kansas over two growing seasons to determine the comparative physiological responses of these dominant grasses of the tallgrass prairie to environmental variables. The response of dark respiration to temperature and of net assimilation to CO2 concentration and absorbed quantum flux differed little among species. A. gerardii had lower potential photosynthetic rates at internal CO2 concentrations below saturation than P. virgatum and S. nutans, but net assimilation under ambient conditions was similar in the three species. Net assimilation and both the initial slope of assimilation versus internal CO2 curves and the maximum potential assimilation rate decreased as leaf water potential declined in blades of A. gerardii and S. nutans. Changes in assimilation capacity were paralleled by changes in stomatal conductance that were similar in all three species. The strong correlations among processes regulating leaf CO2 assimilation and transpiration in A. gerardii, P. virgatum, and S. nutans suggest that the processes are tightly and similarly coupled in these grasses over a wide range of environmental conditions encountered in the tallgrass prairie.
    Keywords: EARTH RESOURCES AND REMOTE SENSING
    Type: Journal of Geophysical Research (ISSN 0148-0227); 97; D17; p. 18,837-18,844.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...