ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The Cretaceous/Tertiary boundary has been identified in the Gosau beds (Elendgraben) near Salzburg, Austria. The undisturbed 2-mm thick boundary clay in the palaeomagnetic G− zone differs from the surrounding sediments in having significant colour, no biogenic calcite and ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Physics and chemistry of minerals 19 (1992), S. 267-288 
    ISSN: 1432-2021
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Abstract Shock experiments on quartz single crystals with initial temperatures −170 to +1000°C showed that ambient temperature does not affect the type of defects formed but can lower the pressure of complete amorphization. The amount of glass recovered increases with both pressure and temperature, and the shock-induced phase transformation of quartz is temperature-activated with an apparent activation energy of 〈60 kJ/ mol. The phase transformation is localized along three types of transformation lamellae (narrow, s-shaped, and wide) which contain fractured and/or high-pressure phases. Transformation lamellae are inferred to form by motion of linear collapse zones propagating near the shock front. Equilibrium phases, such as stishovite, were not recovered and are probably not formed at high shock pressures: the dominant transformation mechanism is inferred to be solid-state collapse to a dense, disordered phase. Melting occurs separately by friction along microfaults, but no high-pressure crystal phases are quenched in these zones. Shock of quartz thus produces two types of disordered material, quenched melt (along microfaults) and diaplectic glass (in transformation lamellae); the quenched melt expands during P-T release, leaving it with a density lower than quartz, while recovered diaplectic glass has a density closer to that of quartz. At low pressures (〈 15 GPa), quartz transforms mostly by shear melting, while at higher pressures it converts mostly along transformation lamellae. We find that shock paleopiezometers using microstructures are nominally temperature-invariant, so that features observed at impact craters and the K/T boundary require in excess of 10 GPa to form, regardless of the target temperature. Shock comminution will be much more extensive for impacts on cold surfaces due to lack of cementation of fragments by melt glass; shock on hot surfaces could produce much more glass than estimated from room-temperature experiments. Because of the shock-impedance mismatch between quartz specimen and steel capsule, the incident shock wave reverberates up to a final pressure. The dynamic compression process is quasi-isentropic with high strain rates. Preheating and precooling achieves final shock pressures and temperatures representative of single-shock states of room temperature quartz and of quartz on known planetary surfaces. Stress histories were calculated by detailed 1- and 2-dimensional computer simulations. The stress history throughout the sample is relatively uniform, with minor variations during unloading. Significant differences between impact pressures calculated by the shock-impedance-match method and specimen pressures calculated by computer simulations indicate the importance of modeling shock recovery experiments computationally.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Physics and chemistry of minerals 21 (1994), S. 133-139 
    ISSN: 1432-2021
    Keywords: Berlinite ; Experimental shock ; Amorphization ; TEM
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Abstract Berlinite single crystal specimens were shocked to peak pressures 12 and 24 GPa. Specimens were placed in an Al capsule to minimize shock-wave reflections at interfaces between specimen and capsule. Shock pressures were achieved with a 6.5-m-long two-stage gun. The shock-induced microstructures in recovered specimens were then investigated by Transmission Electron Microscopy. In the sample shocked at 12 GPa, the prominent shock-induced defects are dislocations and basal a glide appears to be the only glide system activated. In contrast, the sample shocked at 24 GPa exhibits no dislocations. The material is partially converted into an amorphous phase occurring under the form of thin amorphous lamellae parallel to the }10 $$\bar 1$$ n{ planes (n=0, 2, 3, 4). This microstructure is very similar to the one observed in experimentally shocked quartz.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1992-01-01
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1986-08-01
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1991-01-01
    Print ISSN: 0096-3941
    Electronic ISSN: 2324-9250
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1992-07-06
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1994-07-01
    Print ISSN: 0342-1791
    Electronic ISSN: 1432-2021
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-08-31
    Description: Thus far, detailed petrologic studies of shock metamorphism have been performed on samples recovered from laboratory experiments and on a few natural impactites. The loading history of these samples is quite different: In particular, laboratory experiments spend only a short time (less than 1 microsec) at peak pressure, whereas natural impactites may have stress pulses from 0.1 - 1 ms. On the other hand, laboratory experiments have known stress histories; natural impactites do not. Natural samples are also subjected to thousands or millions of years of postshock annealing and/or weathering. A useful intermediate case is that of nuclear detonation. Stress pulses for these events can reach 0.1 ms or higher, and samples are obtained in pristine condition. All three types of loading produce stresses of hundreds of kilobars. Samples studied were taken from the Sedan nulcear test site, and consist of a coarse-grained granodiorite containing quartz, K-feldspar, cordierite, and hornblende. Samples were studied optically in this section, then were thinned with an ion mill and studied by transmission electron microscopy (TEM). Optically, quartz and K-feldspar displayed numerous sets of planar deformation features (PDF's) identical to the nondecorated PDF's seen in laboratory samples and many natural impactites. TEM study showed that the PDF's in quartz and feldspar corresponded to densely packed wide transformation lamellae identical to those described in laboratory studies. The transformation lamellae in both minerals were amorphous, with no sign of high-pressure phases. In the case of K-feldspar only, narrow sublamellae extended outward from some wide lamellae. Quartz, which was more abundant and studied more extensively, contained no shock-induced dislocations. Some planar features were also seen in cordierite, but could not be identified due to rapid beam damage. No shock defects were seen in hornblende in TEM. The shock-induced defects present at the Sedan site are very similar to those seen in shock recovery experiments, and also to those present at certain natural events (e.g., Meteor Crater). This suggests that shock deformation in quartz is not strongly dependent on shock pulse duration, and that laboratory recovery experiments are useful simulations of natural impact events.
    Keywords: GEOPHYSICS
    Type: Lunar and Planetary Inst., International Conference on Large Meteorite Impacts and Planetary Evolution; p 31
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-08-31
    Description: Past cratering studies have focused primarily on crater morphology. However, important questions remain about the nature of crater deposits. Phenomena that need to be studied include the distribution of shock effects in crater deposits and crater walls; the origin of mono- and polymict breccia; differences between local and distal ejecta; deformation induced by explosive volcanism; and the production of unshocked, high-speed ejecta that could form the lunar and martian meteorites found on the Earth. To study these phenomena, one must characterize ejecta and crater wall materials from impacts produced under controlled conditions. New efforts at LLNL simulate impacts and volcanism and study resultant deformation. All experiments use the two-stage light-gas gun facility at LLNL to accelerate projectiles to velocities of 0.2 to 4.3 km/s, including shock pressures of 0.9 to 50 GPa. We use granite targets and novel experimental geometries to unravel cratering processes in crystalline rocks. We have thus far conducted three types of simulations: soft recovery of ejecta, 'frozen crater' experiments, and an 'artificial volcano. Our ejecta recovery experiments produced a useful separation of impactites. Material originally below the projectile remained trapped there, embedded in the soft metal of the flyer plate. In contrast, material directly adjacent to the projectile was jetted away from the impact, producing an ejecta cone that was trapped in the foam recovery fixture. We find that a significant component of crater ejecta shows no signs of strong shock; this material comes from the near-surface 'interference zone' surrounding the impact site. This phenomenon explains the existence of unshocked meteorites on the Earth of lunar and martian origin. Impact of a large bolide on neighboring planets will produce high-speed, weakly shocked ejecta, which may be trapped by the Earth's gravitational field. 'Frozen crater' experiments show that the interference zone is highly localized; indeed, disaggregation does not extend beyond approx. 1.5 crater radii. A cone-shaped region extending downward from the impact site is completely disaggregated, including powdered rock that escaped into the projectile tube. Petrographic analysis of crater ejecta and wall material will be presented. Finally, study of ejecta from 0.9- and 1.3-GPa simulations of volcanic explosions reveal a complete lack of shock metamorphism. The ejecta shows no evidence of PDF's, amorphization, high-pressure phases, or mosaicism. Instead, all deformation was brittle, with fractures irregular (not planar) and most intergranular. The extent of fracturing was remarkable, with the entire sample reduced to fragments of gravel size and smaller.
    Keywords: ASTROPHYSICS
    Type: Lunar and Planetary Inst., International Conference on Large Meteorite Impacts and Planetary Evolution; p 31-32
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...