ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Ultrahigh intensity lasers can potentially be used in conjunction with conventional fusion lasers to ignite inertial confinement fusion (ICF) capsules with a total energy of a few tens of kilojoules of laser light, and can possibly lead to high gain with as little as 100 kJ. A scheme is proposed with three phases. First, a capsule is imploded as in the conventional approach to inertial fusion to assemble a high-density fuel configuration. Second, a hole is bored through the capsule corona composed of ablated material, as the critical density is pushed close to the high-density core of the capsule by the ponderomotive force associated with high-intensity laser light. Finally, the fuel is ignited by suprathermal electrons, produced in the high-intensity laser–plasma interactions, which then propagate from critical density to this high-density core. This new scheme also drastically reduces the difficulty of the implosion, and thereby allows lower quality fabrication and less stringent beam quality and symmetry requirements from the implosion driver. The difficulty of the fusion scheme is transferred to the technological difficulty of producing the ultrahigh-intensity laser and of transporting this energy to the fuel.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 2 (1995), S. 2796-2806 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Regimes of the one-dimensional (1-D) transport of suprathermal electrons into a cold background plasma are delineated. A well ordered temporal progression is found through eras where J⋅E heating, hot electron–cold electron collisional heating, and diffusive heat flow dominate the cold electron energy equation. Scaling relations for how important quantities such as the width and temperature of the heated layer of cold electrons evolve with time are presented. These scaling relations are extracted from a simple 1-D model of the transport which can be written in dimensionless form with one free parameter. The parameter is shown to be the suprathermal electron velocity divided by the drift velocity of cold electrons which balances the suprathermal current. Special attention is paid to the assumptions which allow the reduction from the collisional Vlasov equation, using a Fokker–Planck collision operator, to this simple model. These model equations are numerically solved and compared to both the scaling relations and a more complete multigroup electron diffusion transport. Implications of the scaling relations on fast ion generation, magnetic field generation, and electric field inhibition of electron transport are examined as they apply to laser heated plasmas. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 3 (1991), S. 1279-1293 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The three-body recombination rate is calculated for an ion introduced into a magnetically confined, weakly correlated, and cryogenic pure electron plasma. The plasma is strongly magnetized in the sense that the cyclotron radius for an electron rce=(kBTe/me)1/2/Ωce is small compared to the classical distance of closest approach b=e2/kBTe, where Te is the electron temperature and Ωce=eB/mec is the electron cyclotron frequency. Since the recombination rate is controlled by a kinetic bottleneck a few kBTe below ionization, the rate may be determined by considering only the initial cascade through states of electron-ion pairs with separation of order b. These pairs may be described as guiding center atoms since the dynamics is classical and treatable with the guiding center drift approximation. In this paper, an ensemble of plasmas characterized by guiding center electrons and stationary ions is described with the BBGKY hierarchy. Under the assumption of weak electron correlation, the hierarchy is reduced to a master equation. Insight to the physics of the recombination process is obtained from the variational theory of reaction rates and from an approximate Fokker–Planck analysis. The master equation is solved numerically using a Monte Carlo simulation, and the recombination rate is determined to be 0.070(10)n2eveb5 per ion, where ne is the electron density and ve=(kBTe/me)1/2 is the thermal velocity. Also determined by the numerical simulation is the transient evolution of the distribution function from a depleted potential well about the ion to its steady state.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 4 (1992), S. 1156-1166 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The collisional equipartition rate between the parallel and perpendicular velocity components is calculated for a weakly correlated electron plasma that is immersed in a uniform magnetic field. Here, parallel and perpendicular refer to the direction of the magnetic field. The rate depends on the parameter κ¯=(b¯/rc)/, where rc=(T/m)1/2/Ωc is the cyclotron radius and b¯=2e2/T is twice the distance of closest approach. For a strongly magnetized plasma (i.e., κ¯(very-much-greater-than)1), the equipartition rate is exponentially small (ν∼exp[−5(3πκ¯)2/5/6]). For a weakly magnetized plasma (i.e., κ¯(very-much-less-than)1), the rate is the same as for an unmagnetized plasma except that rc/b¯ replaces λD/b¯ in the Coulomb logarithm. (It is assumed here that rc〈λD; for rc〉λD, the plasma is effectively unmagnetized.) This paper contains a numerical treatment that spans the intermediate regime κ¯∼1, and connects onto asymptotic results in the two limits κ¯(very-much-less-than)1 and κ¯(very-much-greater-than)1. Also, an improved asymptotic expression for the rate in the high-field limit is derived. The present theoretical results are in good agreement with recent measurements of the equipartition rate over eight decades in κ¯ and four decades in the scaled rate ν/nv¯b¯2, where n is the electron density and v¯=(2T/m)1/2.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 13 (2001), S. 20-31 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: An extended Rayleigh model for laser generated bubbles in water and soft tissue is presented. This model includes surface tension, viscosity, a realistic equation of state, material strength and failure, stress wave emission, and linear growth of interface instabilities. The model is validated by comparison to detailed compressible hydrodynamic simulations using the LATIS computer program. The purpose of this study is to investigate the use of the extended Rayleigh model as a much faster and simpler substitute for the detailed hydrodynamic simulations when only limited information is needed. It is also meant to benchmark the hydrosimulations and highlight the relevant physics. The extended Rayleigh model and the hydrosimulations are compared using both a 1D spherical geometry with a bubble in the center and a 2D cylindrical geometry of a laser fiber immersed in water with a bubble formed at the end of the fiber. Studies are done to test the validity of the material strength and failure, stress wave emission, and the interface instability terms in the extended Rayleigh model. The resulting bubble radii, material damage radii, the emitted stress wave energies, and the size of the interface distortions are compared. Many of the trends found in the hydrosimulations are illuminated by the extended Rayleigh model owing to its relative simplicity. The extended Rayleigh model is very useful since it is accurate over a large range of parameters and it is computationally much faster than the hydrosimulations. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-07-01
    Description: We describe the planning, processing, and uncertainty analysis for a marine CSEM survey of the Scarborough gas field off the northwest coast of Australia, consisting of 20 transmitter tow lines and 144 deployments positioned along a dense 2D profile and a complex 3D grid. The purpose of this survey was to collect a high-quality data set over a known hydrocarbon prospect and use it to further the development of CSEM as a hydrocarbon mapping tool. Recent improvements in navigation and processing techniques yielded high-quality frequency domain data. Data pseudosections exhibit a significant anomaly that is laterally confined within the known reservoir location. Perturbation analysis of the uncertainties in the transmitter parameters yielded predicted uncertainties in amplitude and phase of just a few percent at close ranges. These uncertainties may, however, be underestimated. We introduce a method for more accurately deriving uncertainties using a line of receivers towed twice in opposite directions. Comparing the residuals for each line yields a Gaussian distribution directly related to the aggregate uncertainty of the transmitter parameters. Constraints on systematic error in the transmitter antenna dip and inline range can be calculated by perturbation analysis. Uncertainties are not equal in amplitude and phase, suggesting that inversion of these data would be better suited in these components rather than in real and imaginary components. One-dimensional inversion showed that the reservoir and a confounding resistive layer above it cannot be separately resolved even when the roughness constraint is modified to allow for jumps in resistivity and prejudices are provided, indicating that this level of detail is beyond the single-site CSEM data. Further, when range-dependent error bars are used, the resolution decreases at a shallower depth than when a fixed-error level is used.
    Print ISSN: 0016-8033
    Electronic ISSN: 1942-2156
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1995-08-01
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1991-05-01
    Print ISSN: 0899-8221
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2003-01-01
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2002-04-01
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...