ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of natural products 47 (1984), S. 1021-1023 
    ISSN: 1520-6025
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of natural products 47 (1984), S. 748-750 
    ISSN: 1520-6025
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Plants under attack by arthropod herbivores often emit volatile compounds from their leaves that attract natural enemies of the herbivores. Here we report the first identification of an insect-induced belowground plant signal, (E)-β-caryophyllene, which strongly attracts an entomopathogenic ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature biotechnology 21 (2003), S. 360-360 
    ISSN: 1546-1696
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: [Auszug] To the editor The ongoing political controversy surrounding plant biotechnology in Europe is having serious negative consequences not only for the industry, but also for the conduct of plant biology. Modern plant biology involves the routine creation of genetically altered lines that are grown up ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1939
    Keywords: Metabolic turnover ; Monoterpene ; Sesquiterpene ; Diterpene ; Plant chemical defense
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Terpenes are commonly believed to undergo rapid metabolic turnover in plants, but the evidence for this process comes largely from studies that used detached organs or applied radiolabeled precursors in unnatural ways. When 14CO2 pulse labeling experiments were carried out with intact plants of four taxonomically distant, terpene-accumulating species, no significant turnover of monoterpenes, sesquiterpenes or diterpenes was detected in young foliage over a two week period after exposure to 14CO2. These results are consistent with those of other investigations performed under physiologically realistic conditions, and caution against the uncritical incorporation of turnover into models or theories concerning plant chemical defense.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1939
    Keywords: Metabolic turnover ; Monoterpene ; Chemical defense ; Resource availability hypothesis ; Peppermint
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Evidence for the rapid metabolic turnover of leaf monoterpenes is a significant component of theories regarding the evolution and metabolic cost of plant chemical defenses. We re-examined whether monoterpenes are continuously synthesized and lost in intact peppermint plants, and demonstrate that the rapid monoterpene turnover previously observed using detached stems does not occur in intact plants. The apparent artifactual nature of rapid monoterpene turnover in peppermint suggests that a re-evaluation of the rates of metabolic turnover of plant defenses is needed before accurate hypotheses regarding the cost of plant chemical defense can be proposed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-2048
    Keywords: Key words: Nerolidol – Plant-insect interaction – Plant volatiles –Spodoptera– Terpene biosynthesis –Zea (herbivory)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. Upon herbivore attack, maize (Zea mays L.) emits a mixture of volatile compounds that attracts herbivore enemies to the plant. One of the major components of this mixture is an unusual acyclic C11 homoterpene, (3E )-4,8-dimethyl-1,3,7-nonatriene (DMNT), which is also emitted by many other species following herbivore damage. Biosynthesis of DMNT has been previously shown to proceed via the sesquiterpene alcohol, (E )-nerolidol. Here we demonstrate an enzyme activity that converts farnesyl diphosphate, the universal precursor of sesquiterpenes, to (3S)-(E )-nerolidol in cell-free extracts of maize leaves that had been fed upon by Spodoptera littoralis. The properties of this (E )-nerolidol synthase resemble those of other terpene synthases. Evidence for its participation in DMNT biosynthesis includes the direct incorporation of deuterium-labeled (E )-nerolidol into DMNT and the close correlation between increases in (E )-nerolidol synthase activity and DMNT emission after herbivore damage. Since farnesyl diphosphate has many other metabolic fates, (E )-nerolidol synthase may represent the first committed step of DMNT biosynthesis in maize. However, the formation of this unusual acyclic terpenoid appears to be regulated at both the level of (E )-nerolidol synthase and at later steps in the pathway.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-2048
    Keywords: Glandular trichome ; Isoprenoid biosynthesis ; Mentha ; Monoterpene biosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Secretory cells were isolated from the monoterpene-producing glandular trichomes (peltate form) of peppermint as clusters of eight cells each. These isolated structures were shown to be non-specifically permeable to low-molecular-weight, water-soluble cofactors and substrates. Short incubation periods with the polar dye Lucifer yellow iodoacetamide (Mr=660) resulted in a uniform staining of the cytoplasm, with exclusion of the dye from the vacuole. The molecular-weight exclusion limit for this permeability was shown to be less than approx. 1800, based on exclusion of fluorescein-conjugated dextran (Mr ∼ 1800). Intact secretory cell clusters very efficiently incorporated [3H]geranyl pyrophosphate into monoterpenes. The addition of exogenous cofactors and redox substrates affected the distribution of monoterpenes synthesized from [3H]geranyl pyrophosphate, demonstrating that the cell clusters were permeable to these compounds and that the levels of endogenous cofactors and redox substrates were depleted in the isolated cells. When provided with the appropriate cofactors, such as NADPH, NAD+, ATP, ADP and coenzyme A, the isolated secretory cell clusters incorporated [14C]sucrose into monoterpenes, indicating that these structures are capable of the de-novo biosynthesis of monoterpenes from a primary carbon source, and that they maintain a high degree of metabolic competence in spite of their permeable nature.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Journal of chemical ecology 20 (1994), S. 1281-1328 
    ISSN: 1573-1561
    Keywords: Terpenoid biosynthesis ; terpenoid storage ; secretory structures ; metabolic turnover ; volatilization ; catabolism ; carbon-nutrient balance hypothesis ; growth-differentiation balance hypothesis ; resource availability hypothesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract The net value of any plant trait can be assessed by measuring the costs and benefits associated with that trait. While the other contributors to this issue examine the possible benefits of terpenoids to plants, this article explores the metabolic costs of terpenoid accumulation in plants in the light of recent advances in terpenoid biochemistry. Terpenoids are more expensive to manufacture per gram than most other primary and secondary metabolites due to their extensive chemical reduction. The enzyme costs of making terpenoids are also high since terpenoid biosynthetic enzymes are apparently not shared with other metabolic pathways. In fact, plant cells may even possess more than one set of enzymes for catalyzing the basic steps of terpenoid formation. Terpenoids are usually sequestered in complex, multicellular secretory structures, and so storage costs for these substances are also likely to be substantial. However, not all of the processes involved in terpenoid accumulation require large investments of resources. For instance, the maintenance of terpenoid pools is probably inexpensive because there is no evidence that substantial quantities of terpenes are lost as a result of metabolic turnover, volatilization, or leaching. Moreover, plants may reduce their net terpenoid costs by employing individual compounds in more than one role or by catabolizing substances that are no longer needed, although it is still unclear if such practices are widespread. These findings (and other facets of terpenoid biochemistry and physiology) are discussed in relation to the assumptions and predictions of several current theories of plant defense, including the carbonnutrient balance hypothesis, the growth-differentiation balance hypothesis, and the resource availability hypothesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-1561
    Keywords: Chemical defense ; feeding behavior ; glandular trichomes ; Helianthus ; herbivory ; Homoeosoma electellum ; Lepidoptera ; Pyralidae ; host-plant resistance ; plant-insect interactions ; sesquiterpene lactones ; terpenoids
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract The responses of a sunflower specialist,Homoeosoma electellum, the sunflower moth, to the terpenoids produced by its host plant,Helianthus, were measured. Larvae were reared on synthetic diet containing one of three concentrations of the dominant sesquiterpene lactone found in glandular trichomes ofH. maximilliani. Treatments were initiated at each of three larval ages. Pupal weight was significantly reduced, but the effect diminished as the larvae aged. Survival and development time were unaffected by various treatments. In behavioral tests, larvae showed no preference for untreated synthetic diet compared to diet containing the secondary compound at a concentration of 1% by dry weight. When the concentration was raised to 5%, all but last-instar larvae showed a significant preference for the untreated diet. A second behavioral test measured the damage done to whole florets and an array of floral parts offered to larvae of different ages. The damage pattern of floral tissues changed as the larvae grew older, demonstrating that the willingness of larvae to eat tissues contaminated with trichome contents increased with age. The value of the glandular trichome contents as a defense againstH. electellum is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...