ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The present study investigated the interaction of growth irradiance (Qint) with leaf capacity for and kinetics of adjustment of the pool size of xanthophyll cycle carotenoids (sum of violaxanthin, antheraxanthin and zeaxanthin; VAZ) and photosynthetic electron transport rate (Jmax) after changes in leaf light environment. Individual leaves of lower-canopy/lower photosynthetic capacity species Tilia cordata Mill. and upper canopy/higher photosynthetic capacity species Populus tremula L. were either illuminated by additional light of 500–800 µmol m−2 s−1 for 12 h photoperiod or enclosed in shade bags. The extra irradiance increased the total amount of light intercepted by two-fold for the upper and 10–15-fold for the lower canopy leaves, whereas the shade bags transmitted 45% of incident irradiance. In control leaves, VAZ/area, VAZ/Chl and Jmax were positively associated with leaf growth irradiance (Qint). After 11 d extra illumination, VAZ/Chl increased in all cases due to a strong reduction in foliar chlorophyll, but VAZ/area increased in the upper canopy leaves of both species, and remained constant or decreased in the lower canopy leaves of T. cordata. The slope for VAZ/area changes with cumulative extra irradiance was positively associated with Qint only in T. cordata, but not in P. tremula. Nevertheless, all leaves of P. tremula increased VAZ/area more than the most responsive leaves of T. cordata. Shading reduced VAZ content only in P. tremula, but not in T. cordata, again demonstrating that P. tremula is a more responsive species. Compatible with the hypothesis of the role of VAZ in photoprotection, the rates of photosynthetic electron transport declined less in P. tremula than in T. cordata after the extra irradiance treatment. However, foliar chlorophyll contents of the exposed leaves declined significantly more in the upper canopy of P. tremula, which is not consistent with the suggestion that the leaves with the highest VAZ content are more resistant to photoinhibition. This study demonstrates that previous leaf light environment may significantly affect the adaptation capacity of foliage to altered light environment, and also that species differences in photosynthetic capacity and acclimation potentials importantly alter this interaction.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Plants of lucerne (Medicago sativa L. cv. Aragón) inoculated with several strains of Rhizobium meliloti were supplied with a low level of nitrate (5 mM). After 1 week, normalised nodule mass, obtained by dividing nodule weight by shoot weight, was decreased by one-fourth. This result closely paralleled the bacteroid protein content of nodules, whereas the cytosolic content remained constant. Nitrate reductase activity (NRA, EC 1.7.99.4) of bacteroids increased rapidly after nitrate supply, with actual rates being highly dependent on the Rhizobium strain. The expression of cytosolic NR (EC 1.6.6.1) also varied depending on the bacterial strain but was largely insensitive to nitrate feeding. Nitrite reductase activity (NiRA, EC 1.7.2.2) of either bacteroid or plant origin was independent of the R. meliloti strain. Activation occurred after 3 and 7 days, respectively, of nitrate feeding. Significant amounts of nitrite were obtained throughout the experimental period from buffered extracts of both bacteroids and cytosol of nodules. However, when these nodules were ground in the presence of inhibitors of enzyme activity, nitrite was only found in nodules containing strain 102-F-51 after 1 week of treatment. These results agree with the recent hypothesis that nitrite plays a role in a secondary stage of nodule damage by nitrate. We propose that NiRA rather than NRA can be used as an internal probe of nitrate access to the infected region of nodules.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0931-1890
    Keywords: Key words Antioxidants ; Beech ; Carotenoids ; Stress tolerance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  This study shows that beech leaves adapt to their light environment by inducing dramatic changes to antioxidant systems and pigment composition. Thus, ascorbate, tocopherol, glutathione, β-carotene and xanthophyll cycle pigments are much more concentrated in sun leaves, while α-carotene is much less concentrated than in shade leaves. These characteristics were used to identify the inherent potential of beech cotyledons from three contrasting climatic origins to tolerate light stress. The antioxidant content was initially different in the three provenances tested, but these initial differences tended to reduce with leaf ageing. The higher antioxidant and de-epoxidized xanthophyll content found in developing cotyledons indicated a superior potential for tolerance to photo-oxidative damage in those plants collected from the stressful climate of the Pyrenees. Nevertheless under an experimental high irradiation treatment no differences in light stress tolerance were observed between provenances.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5036
    Keywords: lucerne ; nitrate ; nitrate reductase ; Rhizobium meliloti
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Nitrogen fixing plants of lucerne (Medicago sativa L. cv. Aragón) were grown in a glasshouse for three months in the absence of nitrate, and then supplied with 5 mM KNO3 for a week. In control (non-nitrate fed) plants, nitrate reductase activity (NRA EC 1.6.6.1) was detected only in nodules. After nitrate supply, root NRA showed a transient increase. Shoot NRA increased with time, paralleling changes in nitrate distribution; stem NRA represented nearly 50% of total NRA in plant tissues. Total nitrogen, expressed on a dry weight basis, tended to decrease in shoots upon nitrate supply. Bacteroid NRA (EC 1.7.99.4) showed a great variation depending on Rhizobium meliloti strains, ranging from 5 to 40% of total plant NRA. However, different Rhizobium strains did not give different results in terms of plant growth parameters, nitrate or organic nitrogen content.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-5036
    Keywords: denitrification ; nitrate ; nitrate reductase ; nitrite ; nitrite reductase ; nitrous oxide evolution ; Rhizobium meliloti
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The denitrifying ability of thirteen strains of Rhizobium meliloti was tested. Most of the strains were able to reduce nitrate to nitrous oxide or dinitrogen. However, they failed to use nitrate as electron acceptor for ATP generation or growth at low oxygen tensions. Under micro-aerobic conditions, free-living cells of R. meliloti 102-F-51 strain exhibited a constitutive nitrate reductase activity independent of the presence of nitrate. On the other hand, nitrite reductase activity was dependent not only on low levels of oxygen but also on the presence of a high nitrate concentration in the medium. Denitrification activity proceeded immediately once a threshold level of nitrite was accumulated in the medium or in cells incubated with 1mM nitrite. However, a lag period was required when cells were incubated with nitrate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-5036
    Keywords: anaerobic soil ; denitrification ; nitrous oxide ; respiration ; Rhizobium meliloti
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The ability of Rhizobium meliloti cells to denitrify in soils under several conditions was tested. All the strains tested were able to remove large amounts of N-NO3 - from soils. Both water filled pore space above 36% and temperatures above 20°C greatly increased nitrogen losses. However, even with optimal conditions for denitrification and the highest rhizobial populations found in agricultural soils, the contribution of Rhizobium to the total denitrification was virtually negligible as compared to other soil microorganisms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-5036
    Keywords: denitrification ; lucerne ; Medicago sativa ; nitrite detoxification ; Rhizobium meliloti
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Dissimilatory reduction of ionic nitrogen oxides to gaseous forms such as nitrous oxide or nitrogen can be carried out by free living or symbiotic forms of some strains of Rhizobium meliloti. In this paper we investigate whether bacteroid denitrification plays a role in the alleviation of the inhibitory effects of nitrate on nitrogen fixation both in bacteroid incubations as in whole nodules. The presence of a constitutive nitrate reductase (NR) activity in isolated bacteroids caused nitrite accumulation in the incubation medium, and acetylene reduction activity in these bacteroids was progressively inhibited, since nitrite reductase (NiR) activity was unable to reduce all the nitrite produced by NR and denitrification occurred slowly. Even nodules infiltrated with nitrate and nitrite failed to increase gaseous forms of nitrogen substantially, indicating that nitrite availability was not limiting denitrification by bacteroids. In spite of the low rates of bacteroidal denitrification, the effect of nodule denitrification on the inhibition of nitrogen fixation by nitrate in whole plants was tested. For that purpose, lucerne plants (Medicago sativa L. cv. Aragon) were inoculated with two Rhizobium meliloti strains: 102-F-65 (non denitrifying) and 102-F-51 (a highly denitrifying strain). After a seven days nitrate treatment, both strains showed the same pattern of inhibition, and it occurred before any nitrate or nitrite accumulation within the nodules could be detected. This observation, together with the lack of alleviation of the ARA inhibition in the denitrifying strain, and the limited activity of dissimilatory nitrogen reduction present in these bacteroids, indicate a role other than nitrite detoxification for denitrification in nodules under natural conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-11-24
    Description: Nothofagus nitida (Phil.) Krasser (Nothofagaceae) regenerates under the canopy in microsites protected from high light. Nonetheless, it is common to find older saplings in clear areas and adults as emergent trees of the Chilean evergreen forest. We hypothesized that this shade to sun transition in N. nitida is supported by an increase in photochemical and non-photochemical energy dissipation capacities of both photosystems in parallel with the increase in plant size and light availability. To dissect the relative contribution of light environment and plant developmental stage to these physiological responses, the photosynthetic performance of both photosystems was studied from the morpho-anatomical to the biochemical level in current-year leaves of N. nitida plants of different heights (ranging from 0.1 to 7 m) growing under contrasting light environments (integrated quantum flux (IQF) 5–40 mol m –2  day –1 ). Tree height (TH) and light environment (IQF) independently increased the saturated electron transport rates of both photosystems, as well as leaf and palisade thickness, but non-photochemical energy flux, photoinhibition susceptibility, state transition capacity, and the contents of D1 and PsbS proteins were not affected by IQF and TH. Spongy mesophyll thickness and palisade cell diameter decreased with IQF and TH. A max , light compensation and saturation points, Rubisco and nitrogen content (area basis) only increased with light environment (IQF), whereas dark respiration ( R d ) decreased slightly and relative chlorophyll content was higher in taller trees. Overall, the independent effects of more illuminated environment and tree height mainly increased the photochemical instead of the non-photochemical energy flux. Regardless of the photochemical increase with TH, carbon assimilation only significantly improved with higher IQF. Therefore it seems that mainly acclimation to the light environment supports the phenotypic transition of N. nitida from shade to sun.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-03-29
    Description: The photosynthesis in evergreen trees living in Mediterranean ecosystems is subjected to multiple climatic stresses due to water shortage and high temperatures during the summer and to low temperatures during the winter. Mediterranean perennials deploy different photoprotective mechanisms to prevent damage to the photosynthetic system. Wax accumulation in leaves is a primary response which by enhancing light scattering in the leaf surface reduces incident radiation in the mesophyll. The existence of high variability in wax accumulation levels between coexisting individuals of a species has a visual effect on colour that provides distinguishable green and glaucous phenotypes. We explored this variability in a Mediterranean evergreen tree Juniperus thurifera (L.) to evaluate the impact of epicuticular wax on optical and ecophysiological properties and on the abundance of photoprotective pigments throughout an annual cycle. Because of light attenuation by waxes, we expected that glaucous phenotypes would lower the need for photoprotective pigments. We evaluated the effect of phenotype and season on reflectance, defoliation levels, photochemical efficiency and photoprotective pigment contents in 20 green and 20 glaucous junipers. Contrary to our expectations, the results showed that glaucous trees suffered from a diminution in photochemical efficiency, but there was no reduction in photoprotective pigments. Differences between glaucous and green phenotypes were greater in winter, which is the most stressful season for this species. Glaucous individuals also showed the highest levels of leaf defoliation. The lower photochemical efficiency of glaucous trees, together with higher defoliation rates and equal or greater number of physiological photoprotective mechanisms, suggests that in spite of wax accumulation, glaucous trees suffer from more severe stress than green ones. This result suggests that changes in colouration in Mediterranean evergreens may be a decline indicator.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-12-27
    Description: Tocochromanols are the most abundant lipid-soluble antioxidants in plants. Among them, α-tocopherol (α-Toc) shows a particularly high sensitivity to environmental stressors and its content is used as a stress biomarker even in non-photosynthetic tissues. Nevertheless, the presence of tocochromanols has not been described yet in the xylem of woody plants, even when their functions regarding cell membrane protection and the transport of photoassimilates may be crucial in this tissue and despite its potential utility in dendrometabolomics. Considering all these, we aimed to determine the presence and distribution of tocochromanols in the xylem of woody plants, to examine their responsiveness to high temperature and to evaluate their potential as environmental bioindicators. The analysis of 29 phyllogenetically diverse species showed that α-Toc is the most abundant and frequent tocochromanol in the xylem and is ubiquitously present in all the studied species, with a concentration ranging from 0.5 to 39.3 μg g –1 of dry weight. α-Tocopherol appeared to be mainly located in the parenchyma rays and was found in both the sapwood and the heartwood, suggesting that it is present even in dead parenchyma cells. The levels of α-Toc in the xylem did not change in response to locally induced xylem heating, but responded positively to the 3-year moving average of annual precipitation. The present findings suggest that α-Toc may be linked to changes in climatic stress. This should enhance further research on the environmental controls of α-Toc variation in the xylem as a first step towards a deeper understanding of dendrometabolomics.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...