ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
  • 2
    Publication Date: 2020-05-16
    Description: SUMMARY Subduction zones are the places on the Earth where the greatest earthquakes occur. It is now widely accepted that seismic asperities at the interface of subducting plates play a major role in whether a region of a subduction zone behaves seismically, creating strong earthquakes or exhibits aseismic slip. In the last decades, huge advances have been made to decipher the underlying processes; however, the physical parameters along the subduction zone interfaces are still not very well known due to a sparsity of high-resolution experiments and significant costs associated with amphibious seismic experiments. Therefore, synthetic tests are needed to investigate the potential of currently possible high density seismic deployments and to aid future experiment design. As standard local earthquake traveltime tomography in a subduction zone setting cannot resolve structures on a kilometre scale at depth, we explore the suitability of full-waveform inversion (FWI) to increase resolution by using amplitude and phase information in the recorded earthquake seismograms. We apply 2-D-elastic FWI to synthetic earthquake data, using vertical and horizontal receivers, and utilize a realistic model of the seismic velocities at the Ecuadorian margin. We add perturbations within the subducting plates of 4×4 km and 2×2 km in P- and S-wave velocities, respectively, such that potential crosstalk between the two models can be identified. Our results show that the location and amplitude of the perturbations can be reconstructed in high quality down to approximately 70 km depth. We find that the inversion of the S-wave velocity prior to the inversion of the P-wave velocity is necessary to guarantee a good reconstruction of both models; however, the spatial resolution of the S-wave model is superior to the P-wave model. We also show that frequencies up to 1 Hz are sufficient to achieve high resolution. Further tests demonstrate how results depend on the accuracy of the estimated source orientation. Resulting models do not suffer in quality as artefacts near the source positions compensate for the inaccuracy of source orientation. If sources are located within the subducted plate instead of beneath, resulting models are comparable and the convergence of the inversion scheme is sped up. The accuracy of the source position within the model compared to the true earthquake location is critical and implies that earthquake relocation during the inversion process is necessary, in a similar way as in local earthquake traveltime tomography.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1932-02-01
    Print ISSN: 1612-4758
    Electronic ISSN: 1612-4766
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-02-08
    Description: Highlights • Joint seismic, CSEM and geochemical estimate of gas and hydrate saturation. • Converted shear wave analyses for gas hydrate distribution. • Wide angle full waveform inversion. • Paleo-BSRs and gas hydrate system in disequilibrium. • Numerical framework for joint inversion of multiple geophysical methods. Abstract Gas hydrates are naturally-occurring solid compounds of gas and water within almost all sediment-rich continental margins. Due to the large amounts of methane stored in submarine gas hydrates, they might serve as future reservoirs for offshore marine gas production. Assessing the reservoir characteristics requires reliable estimates of both the gas and gas hydrate concentration, which can be best addressed using geophysical and geological investigations. Here, we demonstrate the power of joint interpretation of interdisciplinary geophysical techniques and geological laboratory experiments. Regional 2D multichannel seismic data provide the broad overview of a hydrate-bearing area. High-resolution 2D and 3D seismic reflection data provide detailed images of two working areas, the buried S1 channel-levee system at 1500 m water depth (well within the gas hydrate stability zone) and a slope failure location, located at 665 m water depth (top limit of the hydrate formation) next to the S2 channel. Detailed compressional and shear wave (Vs) velocity-depth models were derived from four component ocean-bottom seismic data, the latter from P- to S-conversion upon reflection. Due to their steep reflection angles, shear wave events result in less resolved Vs models. Nevertheless, in case of a change in elasticity of the sediment matrix due to gas hydrate cementation, shear wave events can be used as an indicator. As such, Vs can give insight into the nature of hydrate formation throughout the GHSZ. We present new developments in the application of common reflection surface, normal-incidence-point tomography and full waveform inversion techniques to enhance model resolution for the seismic data sets. 2D and 3D controlled-source electromagnetic measurements provide volume information of the resistivity-depth distribution models. Electrical resistivity of the sediment formation depends on its porosity and the resistivity of the pore fluid. Gas hydrate and free gas generally have much higher electrical resistivities than saline pore fluid, and can be assessed using empirical relationships if the porosity and pore fluid salinity are known. Calibration with logging data, laboratory experiments on hydrate- or ice-bearing sediments, and resulting velocity and resistivity values, guide the joint interpretation into more accurate saturation estimations. Beyond that, a joint inversion framework supporting forward calculation of specialized geophysical methods at distributed locations is under development. In this paper, we summarize these individual components of a multi-parameter study, and their joint application to investigate gas hydrate systems, their equilibrium conditions and preservation of bottom-simulating-reflectors. We analyze data from two working areas at different locations and depth levels along the slope of the Danube Fan, which are both characterized by multiple bottom simulating reflectors indicating the presence of gas hydrate. In the first working area we located two depth windows with indications for moderate 16%–24% gas hydrate formation, but no vertical gas migration. In the second working area we observed fluid migration pathways and active gas seepage, limiting gas hydrate formation to less than 10% at the BSR. Some discrepancies remain between seismic-based and electromagnetic-based models of gas and gas hydrate distribution and saturation estimates, indicating that further in-situ investigations are likely required to better understand the gas hydrate systems at our study areas and to calibrate the inversion processes, which will be required for a joint inversion framework as well.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of pest science 8 (1932), S. 24-24 
    ISSN: 1612-4766
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-12-14
    Description: Gas hydrates are naturally-occurring solid compounds of gas and water within almost all sediment-rich continental margins. Due to the large amounts of methane stored in submarine gas hydrates, they might serve as future reservoirs for offshore marine gas production. Assessing the reservoir characteristics requires reliable estimates of both the gas and gas hydrate concentration, which can be best addressed using geophysical and geological investigations. Here, we demonstrate the power of joint interpretation of interdisciplinary geophysical techniques and geological laboratory experiments. Regional 2D multichannel seismic data provide the broad overview of a hydrate-bearing area. High-resolution 2D and 3D seismic reflection data provide detailed images of two working areas, the buried S1 channel-levee system at 1500 m water depth (well within the gas hydrate stability zone) and a slope failure location, located at 665 m water depth (top limit of the hydrate formation) next to the S2 channel. Detailed compressional and shear wave (Vs) velocity-depth models were derived from four component ocean-bottom seismic data, the latter from P- to S-conversion upon reflection. Due to their steep reflection angles, shear wave events result in less resolved Vs models. Nevertheless, in case of a change in elasticity of the sediment matrix due to gas hydrate cementation, shear wave events can be used as an indicator. As such, Vs can give insight into the nature of hydrate formation throughout the GHSZ. We present new developments in the application of common reflection surface, normal-incidence-point tomography and full waveform inversion techniques to enhance model resolution for the seismic data sets. 2D and 3D controlled-source electromagnetic measurements provide volume information of the resistivity-depth distribution models. Electrical resistivity of the sediment formation depends on its porosity and the resistivity of the pore fluid. Gas hydrate and free gas generally have much higher electrical resistivities than saline pore fluid, and can be assessed using empirical relationships if the porosity and pore fluid salinity are known. Calibration with logging data, laboratory experiments on hydrate- or ice-bearing sediments, and resulting velocity and resistivity values, guide the joint interpretation into more accurate saturation estimations. Beyond that, a joint inversion framework supporting forward calculation of specialized geophysical methods at distributed locations is under development. In this paper, we summarize these individual components of a multi-parameter study, and their joint application to investigate gas hydrate systems, their equilibrium conditions and preservation of bottom-simulating-reflectors. We analyze data from two working areas at different locations and depth levels along the slope of the Danube Fan, which are both characterized by multiple bottom simulating reflectors indicating the presence of gas hydrate. In the first working area we located two depth windows with indications for moderate 16%–24% gas hydrate formation, but no vertical gas migration. In the second working area we observed fluid migration pathways and active gas seepage, limiting gas hydrate formation to less than 10% at the BSR. Some discrepancies remain between seismic-based and electromagnetic-based models of gas and gas hydrate distribution and saturation estimates, indicating that further in-situ investigations are likely required to better understand the gas hydrate systems at our study areas and to calibrate the inversion processes, which will be required for a joint inversion framework as well.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-04-17
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-03-06
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2024-02-13
    Description: Within the Inter-Wind project we study wind turbine (WT) emissions with ground motion and acoustic measurements which are accompanied by the acquisition of meteorological parameters as well as psychological surveys of residents living in the vicinity of the wind farms. Measurements are conducted on the Swabian Alb in Southern Germany at wind farms Tegelberg and Lauterstein in multiple interdisciplinary campaigns. Here we focus on measurements with line and ring layouts which are directed at improving the prediction of ground-motion emissions of WTs. This dataset contains recorder log files. Seismic data is stored at GEOFON, network 4C (2020 - 2024, Ritter and Gaßner 2022).
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...